人教版第十二章轴对称__(2)垂直平分线__课件_(修正)[1]

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

垂直平分线本节课目标理解线段的垂直平分线的概念;掌握轴对称的“对称轴是对应点所连线段的垂直平分线”等性质;掌握线段垂直平分线的性质定理及其逆定理.概念复习轴对称图形的概念是什么?两个图形轴对称的概念是什么?ACBA’B’C’NM思考:如图,△ABC与△A‘B’C‘关于直线MN对称,点A’,B’,C’分别为点ABC的对称点,线段AA‘,BB’,CC‘与直线MN有什么关系?P∠MPA=∠MPA’=90°AP=PA’对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线ACBA’B’C’NM如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线lA‘A轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线ABP3P2P1l如左图,木条L与木条AB钉在一起,L垂直于AB,P1、P2、P3……是l的点,分别量一量点P1、P2、P3……到A与B的距离,你有什么发现?猜想:线段垂直平分线上的点到这条线段两个端点距离相等.已知:如图,AC=BC,MN⊥AB,P是MN上任意一点.求证:PA=PB.ACBPMNACBPMN已知:如图,AC=BC,MN⊥AB,P是MN上任意一点.求证:PA=PB.证明:∵MN⊥AB,∴∠PCA=∠PCB=90°在△APC与△BPC中PC=PC(公共边)∠PCA=∠PCB(已证)AC=BC(已知)∴△PCA≌△PCB(SAS);∴PA=PB(全等三角形的对应边相等).这个结论是经常用来证明两条线段相等的根据之一.线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点距离相等.∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.即到线段两个端点的距离相等的点在这条线段的垂直平分线上.如果把这个命题反过来说,还成立吗?你能证明这个结论吗?已知:线段AB,点P是平面内一点且PA=PB.求证:P点在AB的垂直平分线上.证明:过点P作已知线段AB的垂线PC,∴∠PCA=∠PCB=90°在Rt△PAC≌Rt△PBC中PA=PB,PC=PC(公共边),∴Rt△PAC≌Rt△PBC(HL)CBPA∴AC=BC(全等三角形对应角相等)即,P点在AB的垂直平分线上证法二:取AB的中点C,连接P,C∵△APC与△BPC中∵AP=BPPC=PCAC=CB∴△APC≌△BPC(SSS)BPA已知:线段AB,点P是平面内一点且PA=PB.求证:P点在AB的垂直平分线上.C∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=∠90°即PC⊥AB∴P点在AB的垂直平分线上线段垂直平分线的判定:定理:到线段两个端点的距离相等的点在这条线段的垂直平分线上.∵PA=PB(已知),∴点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).回味无穷线段垂直平分线性质定理线段垂直平分线上的点到这条线段两个端点距离相等.符号语言,∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).线段垂直平分线判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.符号语言,∵PA=PB(已知),∴点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).小结拓展ACBPMN挑战自我随堂练习1驶向胜利的彼岸如图,已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=cm;如果∠ECD=600,那么∠EDC=0.EDABC760想一想,做一做用尺规作线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.作法:1.分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D.2.作直线CD.直线CD就是线段AB的垂直平分线.DCBA21补充练习:1.已知:△ABC中,边AB、BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.2.如图,求作一点P,使PA=PB,PC=PDABCD

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功