烟台大学硕士学位论文海上目标检测跟踪算法研究及其在DSP硬件平台的实现姓名:毕文申请学位级别:硕士专业:信号与信息处理指导教师:邵左文20090501ISobelHoughTMS320DM643xDSPDM6437TIDM6437EVMTI6000-DSPDM6437IIAbstractInaccordancewiththecharacteristicofsea-skybackground,thepaperproposesanalgorithmfortargetdetectionandtracking.ThealgorithmgetsthebinaryimageusingOTSU,detectsthebinaryimage’sedgeusingSobel-Operator,eliminatesthenoisebymathematicalmorphology,extractstheseahorizontogetthesea-skyregionbyRHT,detectsthetargetsbythealgorithmbasedonmulti-orientationgradscharacteristicwhichispresentedbythepaper,tracksthetargetsusingthemethodbasedonfeatureofgrayandfeatureofinvariantmoments.Experimentsshowthatthealgrithomproposedbythepapergivesagoodresult.TMS320DM643xDMPswhicharethefirstsimpleDSPssupportingtheTI’sDaVincitechnologyarepowerfulandcheapincost.DM6437whichhasaintegratedVPSSissuitableforvideoprocessing.ThealgrithomisrealizedonTI’sDM6437EVMandmeetsrealtimedemandbasically.Thealgorithmhasthenatureofportability.ItcanbeusedinMulti-DSPsimageprocessinghardwareplatform.Keywords:targetdetection,targettracking,DM643778111.12040km1982DSPDSPDSPDSPDSP1.221.2.1[1]1233SobelKirschPrewittRobertsLaplacianLOGCannyBPBP41.2.2[2]1(SSDA)(MPSA)2Gennery6LoweFaugeras35Hartley(FHT)FourierHartleyHoughPoratHeegerGabor1.3DSP1.3.1DSPDSPDSP[3][4][5][6][7]1DSP26DSP1-11-13DSPDSP4DSPCPUALUC6000CPU26ALU88325DSPDSP6CPU7DSPDSPDSPRAM71.3.2DSPDSP70DSP1978AMIS28111979IntelIntel2920DSPDSP1980NECPD7720DSPHitachi1982CMOSDSP1983FujitsuMB8764120nsDSPAT&T1984DSP321982TexasInstrumentsTIDSPTMS32010TMS32011TMS32C10/C14/C15/C16/C17DSPTMS32020TMS320C25/C26/C28DSPTMS32C30/C31/C32,DSPTMS32C40/C44DSPTMS32C50/C51/C52/C53DSPDSPTMS32C80/C82TMS320C64x/C67xDSPTMS320C28xMotorola1986MC56001DSP1990IEEEMC96002DSP1980DSPDSP80CMOSCMOSDSP80DSP90DSPDSPOMAPDaVinciDaVinci8[8]DaVinciTMS320DM644xARM926TMS320C64+DSPSoCSystemonChipIPTMS320DM643xTMS320C64+DSPTMS320DM647/TMS320DM648IPTMS320DM355MPEG-4/JPEGARM926DaVinciIPDSPDSPDSPDSP[9][10]1.41Hough923Hu4DSPCC5TITMS320DM6437EVMCCDLCD1.5DM6437EVM10232.12.1.1[1]11[11][12]2.1.1.1[1]FXYNNG(,)fxyNN(,)gxy1122211221(,)(,)NNNNmngxyfxmynN−−−−===++∑∑2-1N12-133F(,)fxy(,)gxy11111(,)(,)9mngxyfxmyn=−=−=++∑∑2-2122.1.1.2[13]332-1(d)2-2(d)9(a)(b)(c)33(d)332-113(a)(b)(c)33(d)332-29365430[11]nn1/n33121/3314(,)fxy(1,1)(1,)(1,1)(,1)(,)(,1)(1,1)(1,)(1,1)fxyfxyfxyfxyfxyfxyfxyfxyfxy−−−−+−++−+++(,1)fxy+(1,)(1,1)(1,2)(,)(,1)(,2)(1,)(1,1)(1,2)fxyfxyfxyfxyfxyfxyfxyfxyfxy−−+−++++++++3M3330M12M12+6M-16M+62.1.23[14][15][16]15[17][18][19]Radon[16][20][15]Hough[14]HoughHoughHough2.1.2.11[21]maxfminf0Tmaxmin02ffT+=2-30T00(,)(,)1212(,)(,),fxyTfxyTfxyfxyffNN≥==∑∑2-41N0T2N0T(,)fxy(,)xy1T161212ffT+=2-510TT−1T1T0T2310TT−1T2[22][23]Ostu1979OstuLiinNiiinPN=2-6T0C1C0CT1CT0C1C10101,TLiiiiTwPwP−==+==∑∑2-7101ww=−0C1C0000()TiiiPuTuww===∑2-8111001100()11LLTiiiiTiiiPiPiPuuTu−−=+==−−===−−∑∑∑2-910LiiuiP−==∑0()TiiuTiP==∑0C1C220000()TiiiuPwσ=−=∑2-102211111()LiiTiuPwσ−=+−=∑2-112wσ2Bσ2220011σσσ=⋅+⋅2-12172220011()()Bwuuwuuσ=−+−2-13()Tη222()BTBwσησσ=+2-14[24][25]3[26]PunLiinNiiinPN=2-15T0C1C0CT1CT0C1C10101,TLiiiiTwPwP−==+==∑∑2-16101ww=−0C1C0000logTiiCiPPHww==−∑2-171111logLiiCiTPPHww−==−∑2-1801()CCHTHH=+2-19184[27](a)(b)(c)(d)2-319(a)(b)(c)(d)2-442-1(d)2-2(d)2-32-42-1(a)2-2(a)2.1.2.2[28][29]201FSFS⊕FS={(,)|F}xyxyS⊕≠∅I2-20S(,)xyFSFS(,)xySFSF1(,)fxy102FSFSΘFS={(,)|SF}xyxyΘ∈2-21S(,)xyF(,)fxy103SFFS=(FS)SΘ⊕o2-22F(F)SSS•=⊕Θ2-23332-3(b)2-4(b)22-5(a)(b)21(a)(b)2-52.1.2.3HoughRobertsSobelPrewittLaplacianCannyKirshMarr1Roberts[30]Roberts(,)xy22(,)(,)(1,1)(1,)(,1)Gxyfxyfxyfxyfxy=−++++−+2-24(,)xyGxyGG=+2-25GxGy221001,0110HxHy−==−2-26Roberts2Sobel[30]Sobel(,)ij22(,)SijSxSy=+2-27(,)||||SijSxSy=+2-28SxSy33xy101121202,000101121HxHy−=−=−−−−2-29Sobel3Prewitt[30]Prewitt2-27SxSy33101111101,000101111HxHy−=−=−−−−2-3023Prewitt4Laplacian[30]Laplacian(,)xyLaplacian22222fffxy∂∂∇=+∂∂2-31xy22((1,)(,))(1,)(,)(2,)2(1,)(,)fGxfxyfxyxxxfxyfxyxxfxyfxyfxy∂∂∂+−==∂∂∂∂+=−∂∂=+−++2-3222((,1)(,))(,1)(,)(,2)2(,1)(,)fGyfxyfxyyyyfxyfxyyyfxyfxyfxy∂∂∂+−==∂∂∂∂+=−∂∂=+−++2-33(1,)ij+(,)ij22(1,)2(,)(1,)ffxyfxyfxyx∂=+−+−∂2-3422(,1)2(,)(,1)ffxyfxyfxyy∂=+−+−∂2-3512010111141,181010111HH−−−−=−−=−−−−−−2-36LaplacianLaplacian5Canny[31]Canny2422221(,)exp()22xyGxyπσσ+=−2-37σGxGGy∂∂∇=∂∂2-38221222exp()exp()()()22Gxykxhxhyxσσ∂=−−=∂2-39221222exp()exp()()()22Gyxkyhyhxyσσ∂=−−=∂2-40(,)fxy(,),(,)xyGGEfxyEfxyxy∂∂=∗=∗∂∂2-41(,)xy22(,)(,)(,)(,),(,)arctan()(,)yxyxExyMxyExyExyxyExyθ=+=2-42CannySobel2-525(a)(b)2-62.1.2.4Hough[32]HoughXY(,)xyykxb=+2-43kbbkxy=−+2-44(,)xyKB(,)kb2-7XYcossinxyρθθ=+2-45ρθ26XY0(,)iixy(,)jjxy00ykxb=+KB0jjbxky=−+iibxky=−+00(,)kb2-71θθρθρ(,)ρθcossinxyρθθ=+2.1.2.5Hough[33][34]HoughHoughRandomHoughTransformRHTHoughRHTHoughHoughRHT2-8Hough27(a)(b)2-82.1.3[35]28[36]1000(,)fxy(,)fxyxyx∆y∆00,xxxyyy=+∆=+∆2-462000(,)fxy(,)fxyα0000cossin,sincosxxyyxyαααα=+=−+2-47cos1α=sinαα=XY1x2xx1x2xxx1xx−1xx293x3xx3xx2.22.2.12-82-92-2(b)2-10(a)(b)(c)(d)2-930(a)(b)(c)(d)2-102-92-102.2.22-82-112-2(b)2-1231(a)Robert(b)So