I摘要三维平动并联机器人机构以其速度高、刚度大、精度高、动力性能好、驱动元件少、造价低和结构紧凑等优点,在工业领域正发挥着不可估量的作用,也日益受到人们的广泛关注。本文应用并联机器人机构拓扑学理论,在对并联机构的输出矩阵进行研究的基础上,对三维平动并联机器人机构的轨迹综合与规划进行了较为系统的研究。首先,对能实现给定空间曲线的并联机构进行了选型,建立了位置方程。利用全微分理论求得了三维平动并联机器人机构运动轨迹的影响矩阵,确定了影响其运动轨迹的五大影响因素并进行了深入分析。其次,基于给定的空间曲线,对三维平动并联机器人机构进行了轨迹综合。综合出了驱动杆的初始值、移动范围、圆柱副副的移动范围、转动副的转动范围以及奇异位等,昀终确定了三维平动并联机器人机构的初始装配尺寸。第三,基于曲线参数化理论,对三维平动并联机器人机构的轨迹规划进行了研究,进一步完善了基于位置反解的并联机器人机构的轨迹规划方法,并提出了一种基于ADAMS点驱动的并联机器人机构轨迹规划方法。确定了并联机器人机构按照期望轨迹运动时驱动副上应施加的运动规律。第四,以3-RPC三维平动并联机器人机构为例,借助于计算机辅助设计软件设计了虚拟样机,并在样机上进行了仿真试验,对前述的计算和轨迹规划进行了验证。昀后,对3-RPC并联机器人机构在康复医疗器械上的应用做了有意义的探讨。通过以上的分析和研究,对影响三维平动并联机器人机构运动轨迹的因素有了具体而深入的了解,综合出了初始装配尺寸,提出并完善了并联机器人机构的运动轨迹规划方法,确定了动平台按期望轨迹运动时驱动副上应施加的运动规律,为并联机器人物理样机的制造和控制奠定了良好的基础。关键词:轨迹综合,曲线参数化,轨迹规划,虚拟样机,运动仿真IAbstractWiththeadvantagesofhighspeed,accuracyandstiffness,gooddynamicperformance,fewdriveelements,lowcostandcompactstructure,3-DOFtranslationalparallelrobot’seffectinindustryisincreasinglybecomingunmeasurableandwidelyconcernedbypeople.Thisdissertationdealssystematicallywiththetrajectorysynthesisandplanningsimulationof3-DOFtranslationalparallelrobotmechanismsbasedontopologystructuretheoryandoutputmotionmatrixofparallelrobotmechanism.Firstly,theparallelmechanismswereselectedbasedongivenspatialcurve.Positionequationwasbuiltandtheforwardandinversepositionformulationsarededuced.3-DOFtranslationalparallelrobotmechanisms’fiveinfluencingfactorsweregainedandfurtheranalyzedfrominfluencematrixwhichwasdeducedfromall-differentialtheory.Secondly,3-DOFtranslationalparallelrobotmechanismwassynthesizedbasedonthegivenspatialcurves.Therangeofdrive-limbs’transfer,cylinder’stransfer,drive-limbs’runningandparallelmechanism’ssingularitywereobtained.Thus,theinitializationalassemblydimensionswerealsogained.Thirdly,trajectoryplanningof3-DOFtranslationalparallelrobotmechanismwasstudiedbasedoncurvesparameterizationtheory.Themethodoftrajectoryplanningbasedoninversepositionhasbeenfurtherconsummated,andanewtrajectoryplanningmethodbasedonPointMotionwasputforward.Themovementrulesappliedtothedrivingslidersweredeterminedinordertomakethemoveableplatformofthemechanismtomoveaccordingtotheexpectedpath.Fourthly,takethe3-RPCparallelrobotforexample,thevirtualprototypewasdesignedbyCADsoftwareandthesimulationexperimentsweredoneonit.Atlast,theanalysisresultsandmethodsoftrajectoryplanningbeforehavebeenverified.Finally,theapplicationof3-RPCparallelmechanismonhealingmedicaltreatmentinstrumentshasbeendiscussedmeaningfully.Throughaboveanalysisandstudies,wehavehadaclearanddeeplyknowledgeabouthowthefiveinfluencingfactorsinfluencethetrajectoryof3-DOFtranslationalparallelrobotmechanism,waysofparallelmechanism’strajectoryplanninghavebeenputforwardandconsummated.Themovementrulesappliedtothedrivingslidersweredeterminedinordertomakethemoveableplatformofthemechanismtomoveaccordingtotheexpectedpath.Allofthishavemadeagoodfoundationtothemanufactureandconrolofrealprototypeof3-RPCparallelrobot.Keywords:TrajectorySynthesis,CurvesParameterizationTheory,TrajectoryPlanning,VirtualPrototype,KinematicsSimulationII目录第一章绪论………………………………………………………………………………11.1本课题的研究意义…………………………………………………………………11.2并联机器人的概述和国内外研究现状…………………………………………11.2.1并联机器人的概述……………………………………………………………11.2.2机构轨迹综合的研究现状……………………………………………………21.2.3并联机器人机构轨迹综合的研究现状··············31.3本论文的主要研究内容·····················3第二章三维平动并联机器人机构的轨迹综合···············52.1概述······························52.2空间曲线一般方程的数学描述···················52.3并联机器人机构拓扑结构理论···················62.3.1并联机器人机构单开链机构组成及其符号表示··········62.3.2并联机器人机构结构分解···················82.3.3并联机器人机构单开链运动输出特征矩阵············82.3.4并联机器人机构运动输出特征矩阵···············102.4实现给定空间曲线轨迹的并联机器人机构分析···········11III2.5三维平动并联机构运动轨迹影响因素分析·············132.5.13-RPC并联机器人机构的结构·················132.5.23-RPC并联机器人机构的位置正反解分析············142.5.33-RPC并联机器人机构运动轨迹的影响因素分析·········162.6三维平动并联机器人机构的轨迹综合···············202.6.1空间点的选取························202.6.23-RPC并联机器人机构的运动轨迹综合·············212.7本章小结···························25第三章三维平动并联机器人机构的轨迹规划···············263.1概述······························263.2曲线参数化的基本知识······················273.2.1空间直线的参数化······················273.2.2空间几何曲线的参数化····················273.2.3空间自由曲线的参数化····················283.3基于位置反解的轨迹规划·····················323.3.1圆锥螺旋曲线的参数化方程··················323.3.2实现圆锥螺旋曲线的驱动杆的运动规律·············33IV3.3.3数据采集··························343.4基于ADAMS点驱动的轨迹规划···················353.4.1空间相贯线运动轨迹的参数化·················353.4.2实现空间相贯线的驱动杆运动规律···············363.4.3空间精确点间的定位、抓取运动轨迹规划············373.5本章小节····························39第四章虚拟样机的设计与仿真试验···················404.1虚拟样机技术概述························404.2虚拟样机的设计·························414.2.13-RPC并联机器人实体模型的建立···············424.2.2运动副的添加························444.3仿真试验····························464.3.1基于位置反解的圆锥螺旋曲线轨迹仿真·············464.3.2基于点驱动的相贯线轨迹仿真·················474.3.3基于点驱动的立方体加工轨迹仿真···············494.4本章小结····························50第五章3-RPC并联机器人在康复医疗上的应用··············51V5.1康复医疗机器人概述·······················515.2中医推拿简介与对机构的期望···················525.2.1中医推拿··························525.2.2中医推拿对并联机构的要求··