线性代数(复旦版)习题详解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1《线性代数》习题参考习题一1.解:(1)212211512.(2)2232221111111xxxxxxxxxx(3)2222abababab(4)1113141151481391181354915895(5)0000000000000000abcacbdabcdd(6)12331211122233331223123118231.2.解:(1)对排列34215而言,3与2,1分别构成一个逆序,4与2,1也分别构成一个逆序,2与1也构成一个逆序,所以342155。(2)对排列4321而言,4与3,1,2分别构成一个逆序,3与1,2也分别构成一个逆序,所以43125。(3)对排列121nn而言,n与1,2,,2,1nn均分别构成一个逆序,其逆序数为1n;1n与2,3,,2,1nn也分别构成一个逆序,其逆序数为2n,依次类推,2与1也构成一个逆序,因此有112112212nnnnnn(4)对排列1321242nn而言,3与2构成一个逆序,其逆序数为1;5与4,2分别构成一个逆序,其逆序数为2;……;21n分别与22,24,,4,2nn构成一个逆序,其逆序数为1n;22n分别与24,,4,2n构成一个逆序,其逆序数为2n,……;4与2也构成一个逆序,其逆序数为1;因此有213212421211211nnnnnnn3.解:在四阶行列式中,含因子1123aa的项只有两类,分别为11233244aaaa和11233442aaaa,下面分别判断这两项的符号,因为行标排列已经是自然排列,故只须计算列标排列的逆序数。因为12341,13422,所以含1123aa的项分别为11233244aaaa和11233442aaaa。4.解:(1)12321323410715412407247241202120215220105200152201170117011709459450178501785117rrrrrrrr按第一列展按第一列展(2)123421314101113111311110113011010031113110131010010111031100001ccccrrrrrr(3)121231300202002420rarrrdrrrfabacaebcebcebdcddeadfbceadfebfcfefbceceabdfabcdefc按第一列展(4)122110001010110110111101101101001001raraabaababbcccddd按第一列展322310111111110rdrabaabacabcdabadcddcddcd按第3列展.3(5)1232222222222rrrabcaaabcabcabcbbacbbbacbcccabcccab121312211111122002200rabcrbrrcrabcbbacbabcabccccababc3abc.(6)21312224020003554135435524833123348321120512211cccc按第1行展132327105710210532270105001cccc按第3行展.(7)1232211222100022222222222012223200120022220002=nrrrrrrnnn按第行展212222!nn.(8)11001000010000011000000000100=naaaaaaaaaa按第行展1112122011101nnnnnnnnaaaaaaa.45.证明:(1)213122222222232222222111100=ccccaabbaababaababaaabbababababa按第行展122312rbarbaababaab.(2)21314122222222222222222222123214469123214469214469123214469123ccccccaaaaaaaabbbbbbbbccccccccdddddddd32434222222322322212621202126212002126212021262120ccccccaaaabbbbccccdddd(3)22112311221100001000001nnnnnnnxxcxcxcxcxcxaaaaxa221122112211221100001000001nnnnnnnnnnxxxxxxxxaaxaxaxaxxaaaxa11111111111111000100100111=nnnnnnnnnnnnnnnxxaxaxaxxaxaxaxaxaxa按第行展6.解:(1)因为123,,xxx是方程30xpxq的3个根,那么123,,xxx必然满足51230xxxxxx,将其展开得321232313121230xxxxxxxxxxxxxxx,由对应项系数相等可知,1230xxx即1230xxx因此1231231231233121233122312310xxxxxxxxxxxxxxxrrrxxxxxxxxx(2)在此四阶行列式中,能出现3x的因子的项只有12213344aaaa。由于行标排列已是自然排列,故只须判断列标排列的逆序数,即21341,所以12213344aaaa的符号为负,因此3x的系数是1。(3)由定理4.1知14243444142434442411111011010101101AAAAAAAAabcaccbdcdcbcdbcdcabdad(4)由定理4.1可知1211200000000011111111nnnnrarnnnnrarrarxaaaxaaxaaxaAAAxaaaxaxan1000000=nxaxaxaxaxa按第行展7.解:(1)621121221121221nininnnininnnninixmxxxmxxxxmxxmxmxDcccxxxmxmxxm2112111000nninirrnnniirrxmxxmxmxmm(2)12112312312110000100002200022000001100011nnnnnnnnDcccnnnn111!121122nnnnn.(3)20000nababababDacdcdcdcdd按第1列展21211222200012110nnnnbabcnadDCbDabcdcd按第列展72122242nnnnadbcDadbcDadbcDadbc.(4)112211111111101111111011111110111101111nnnnaaaaDaaa213111111121231212111111111111110000000100011100001000000010000000nnniirrrrnrrnrrnnnnaaaaccccaaaaaaaa12111nniiaaaa.8.解:(1)1231210211011202118,1114,2114,21112112312132113DDDD故4141123,,.828282xyz(2)1212344234143401113111031116,128,48130113011101073137310331DDD故12348,3,6,4xxxx.34124412340131011396,01311130107310733DD89.解:齐次线性方程组有非零解,则其系数行列式0D11111121D由0D得1或0.习题二1.解:05822221322323056222217202902227292ABA111123058111124056111051290TAB92.解:(1)11,2,3072AB(2)237411211252130110121AB(3)410103111392121022019911134AB(4)111200111200AB(5)2100214200422100AB(6)1111122222020000201000202nnnnnabcbcabcbcABabcbc.3.解:(1)12121,,,nniiinbbaaaabb(2)1111212212221212,,,nnnnnnnnaabababaabababbbbaababab(3)111213111231222232111122133121222233131232333213233333,,,,aaaxxxxxaaaxaxaxaxaxaxaxaxaxaxxaaaxx222111222333121213132323222axaxaxaxxaxxaxx4.证明:(1)10设矩阵,,ijijijmssnsnAaBbCc,则根据矩阵的加法与乘积的定义有矩阵ABC中第i行第j列的元素1sijikkjkjkdabc矩阵ABAC中第i行第j列的元素11ssijikkjikkjkkeabac由此可以看出,矩阵ABC和ABAC中的元素一一对应相等因此有ABCABAC(2)设矩阵,ijijmssnAaBb,则根据矩阵乘积的定义

1 / 115
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功