网址:.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.一、填空题1.如果一个图形沿着一条直线_____,直线两旁的部分能够_____,那么这个图形....叫做_____,这条直线叫做它的_____,这时,我们也就说这个图形....关于这条直线(或轴)_____.2.把一个图形沿着某一条直线折叠,如果它能够与_____重合,那么这两图形...叫做关于_____,这条直线叫做_____,折后重合的点是_____,又叫做_____.3.成轴对称的两个图形的主要性质是(1)成轴对称的两个图形是_____;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_____的垂直平分线.4.轴对称图形的对称轴是_____.5.(1)角是轴对称图形,它的对称轴是_____;(2)线段是轴对称图形,它的对称轴是_____;(3)圆是轴对称图形,它的对称轴是_____.二、选择题6.在图1-1中,是轴对称图形.....的是()图1-17.在图1-2的几何图形中,一定是轴对称图形的有()图1-2A.2个B.3个C.4个D.5个8.如图1-3,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()图1-3A.30°B.50°C.90°D.100°网址:.将一个正方形纸片依次按图1-4a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图1-5中的()图1-4图1-510.如图1-6,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片收展平,那么∠AFE的度数为()图1-6A.60°B.67.5°C.72°D.75°综合、运用、诊断一、解答题11.请分别画出图1-7中各图的对称轴.(1)正方形(2)正三角形(3)相交的两个圆图1-712.如图1-8,ΔABC中,AB=BC,ΔABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BDA'的度数.网址:-813.在图1-9中你能否将已知的正方形按如下要求分割成四部分,(1)分割后的图形是轴对称图形;(2)这四个部分图形的形状和大小都相同.请至少给出四种不同分割的设计方案,并画出示意图.图1-914.在图1-10这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.图1-10拓展、探究、思考15.已知,如图1-11,在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,求∠OED的度数.图1-11网址:.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.课堂学习检测一、填空题1.经过_____并且_____的_____叫做线段的垂直平分线.2.线段的垂直平分线有如下性质:线段的垂直平分线上的_____与这条线段_____的_____相等.3.线段的垂直平分线的判定,由于与一条线段两个端点距离相等的点在_____,并且两点确定_____,所以,如果两点M、N分别与线段AB两个端点的距离相等,那么直线MN是_____.4.完成下列各命题:(1)线段垂直平分线上的点,与这条线段的_____;(2)与一条线段两个端点距离相等的点,在_____;(3)不在线段垂直平分线上的点,与这条线段的_____;(4)与一条线段两个端点距离不相等的点,_____;(5)综上所述,线段的垂直平分线是_____的集合.5.如图2-1,若P是线段AB的垂直平分线上的任意一点,则(1)ΔPAC≌_____;(2)PA=_____;(3)∠APC=_____;(4)∠A=_____.图2-16.ΔABC中,若AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,则AB=_____,AC_____.7.如图2-2,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5cm,BC=3cm,则ΔPBC的周长=_____.图2-2网址:综合、运用、诊断一、解答题8.已知:如图2-3,线段AB.求作:线段AB的垂直平分线MN.作法:图2-39.已知:如图2-4,∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.作法:图2-4拓展、探究、思考10.已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.图2-511.如图2-6,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,那么点E、F是否关于AD对称?若对称,请说明理由.网址:-6测试3轴对称变换学习要求1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.一、填空题1.由一个_____得到它的_____叫做轴对称变换.2.如果由一个平面图形得到它关于某一条直线l的对称图形,那么,(1)这个图形与原图形的_____完全一样;(2)新图形上的每一点,都是_____;(3)连接任意一对对应点的线段被_____.3.由于几何图形都可以看成是由点组成的,因此,要作一个平面图形的轴对称图形,可归结为作该图形上的这些点关于对称轴的______.二、解答题4.试分别作出已知图形关于给定直线l的对称图形.(1)图3-1(2)图3-2(3)图3-3网址:.如图3-4所示,已知平行四边形ABCD及对角线BD,求作ΔBCD关于直线BD的对称图形.(不要求写作法)图3-46.如图3-5所示,已知长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形.(不要求写作法)图3-57.为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等,现已有两种不同的分法:①分别作两条对角线(图①),②过一条边的四等分点作该边的垂线段(图②),(图②中的两个图形的分割看作同一种方法).请你按照上述三个要求,分别在图③的三个正方形中,给出另外三种不同的分割方法.(只画图,不写作法)图3-6综合、运用、诊断8.已知:如图3-7,A、B两点在直线l的同侧,点A'与A关于直线l对称,连接A'B交l于P点,若A'B=a.(1)求AP+PB;(2)若点M是直线l上异于P点的任意一点,求证:AM+MB>AP+PB.网址:-79.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图3-8,在l上求作一点M,使得|AM-BM|最小;作法:图3-8(2)如图3-9,在l上求作一点M,使得|AM-BM|最大;作法:图3-9(3)如图3-10,在l上求作一点M,使得AM+BM最小.图3-10拓展、探究、思考10.(1)如图3-11,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;网址:-11(2)如图3-12,已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q(点P在点Q的左侧)且PQ=a,四边形APQB的周长最小.图3-1211.(1)已知:如图3-13,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;图3-13(2)已知:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小.图3-14网址:.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.2.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.课堂学习检测一、解答题1.按要求分别写出各对应点的坐标:已知点A(2,4)B(-1,5)C(-3,-7)D(6,-8)E(9,0)F(0,-2)关于y轴的对称点A'()B'()C'()D'()E'()F'()关于x轴的对称点A''()B''()C''()D''()E''()F''()2.已知:线段AB,并且A、B两点的坐标分别为(-2,1)和(2,3).(1)在图4-1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标.图4-1(2)在图4-2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标.网址:-23.如图4-3,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.图4-3综合、运用、诊断4.如图4-4,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.图4-4拓展、探究、思考5.如图4-5,在平面直角坐标系中,直线l是第一、三象限的角平分线.网址:-5实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'_____、C'_____;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为_____(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.测试5等腰三角形的性质学习要求掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.课堂学习检测一、填空题1._____的_____叫做等腰三角形.2.(1)等腰三角形的性质1是______________________________________________.(2)等腰三角形的性质2是______________________________________________.(3)等腰三角形的对称性是_____,它的对称轴是_____.图5-1网址:.如图5-1,根据已知条件,填写由此得出的结论和理由.(1)∵ΔABC中,AB=AC,∴∠B=______.()(2)∵ΔABC中,AB=AC,∠1=∠2,∴AD垂直平分______.()(3)∵ΔABC中,AB=AC,AD⊥BC,∴BD=______.()(4)∵ΔABC中,AB=AC,BD=DC,∴AD⊥______.()4.等腰三角形中,若底角是65°,则顶角的度数是_____.5.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.6.等腰