向量坐标的正交分解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§2.3.2—§2.3.3平面向量的正交分解和坐标表示及运算教学目的:1、知识与技能理解平面向量的坐标的概念;掌握平面向量的坐标运算2、过程与方法会根据向量的坐标,判断向量是否共线.;3、情感态度与价值观理解研究向量从两方面,它们之间是统一的教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.教学过程:一、问题情景创设:1.平面向量基本定理:如果1e,2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e+λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,1e,2e唯一确定的数量那么向量用坐标怎样表示呢?二、探索开发新结论:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得yjxia…………○1我们把),(yx叫做向量a的(直角)坐标,记作),(yxa…………○2其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○2式叫做向量的坐标表示.与.a相等的向量的坐标也为..........),(yx.特别地,)0,1(i,)1,0(j,)0,0(0.如图,在直角坐标平面内,以原点O为起点作aOA,则点A的位置由a唯一确定.设yjxiOA,则向量OA的坐标),(yx就是点A的坐标;反过来,点A的坐标),(yx也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.三、]总结概括新结论平面向量的坐标运算(1)若),(11yxa,),(22yxb,则ba),(2121yyxx,ba),(2121yyxx两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ba)()(2211jyixjyixjyyixx)()(2121即ba),(2121yyxx,同理可得ba),(2121yyxx(2)若),(11yxA,),(22yxB,则1212,yyxxAB一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)(x1,y1)=(x2x1,y2y1)(3)若),(yxa和实数,则),(yxa.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a)(yjxiyjxi,即),(yxa四、巩固应用结论:例1(书107页例3)已知A(x1,y1),B(x2,y2),求AB的坐标.总结:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标例2(书107页例4)已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3(书108页例5)已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由DCAB得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)例4已知三个力1F(3,4),2F(2,5),3F(x,y)的合力1F+2F+3F=0,求3F的坐标.解:由题设1F+2F+3F=0得:(3,4)+(2,5)+(x,y)=(0,0)即:054023yx∴15yx∴3F(5,1)五、课堂练习:1.若M(3,-2)N(-5,-1)且21MPMN,求P点的坐标2.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.六、小结(1)若),(11yxa,),(22yxb,则ba),(2121yyxx,ba),(2121yyxx两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ba)()(2211jyixjyixjyyixx)()(2121即ba),(2121yyxx,同理可得ba),(2121yyxx(2)若),(11yxA,),(22yxB,则1212,yyxxAB一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)(x1,y1)=(x2x1,y2y1)(3)若),(yxa和实数,则),(yxa.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a)(yjxiyjxi,即),(yxa七、课后作业

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功