分析法、综合法证明不等式。,求证:已知yxyxyx0.1,,即证明:欲证yxyxyxyx,只需证)(2yxyyxyx,即0)(yxy,故原不等式成立。而上述不等式显然成立。求证:5273.2)(分析法证明:)(综合法2021210)52()73(22,即只需证,521,只需证2521。而这显然成立,故5273202121010212,2521,即22)52()73(。5273。,求证:设31332122)()(0,0.3yxyxyx)(分析法证明:)(综合法33662222662)(3yxyxyxyxyx即233322)()(yxyx只需证xyyx3222只需证,故原不等式成立。而xyxyyx32222)(3)(222266322yxyxyxyx33666yxyx2333366)(2yxyxyx31332122)()(yxyx。,求证:已知||||||||||||,.4bababaRba,,只需证证明:欲证22)(|)||(|||||||||babababa说明:。也成立不等式||||||||||||bababa,即abab||时等号成立。0:abiff,,故而上述不等式显然成立||||||||baba,,只需证欲证22|)||(|)(||||||babababa,立,故,而上述不等式显然成即||||||||babaabab。时等号成立0:abiff。,求证:,,已知|32|9||6||3||.5zyxzyx||3||2|||32|zyxzyx证明:11111111)1.(6nnnnnn求证:,这显然成立。,只要证证明:对于左端不等式nn1111193623,这显然成立。证对于右端不等式,只要n111111111)2(nnnn求证:11111111111nnnnnnn证明:。,求证:设cacbbacba411.7cbcbbabacbbacbcabaca证明:11)11(nnn11112nnncbbabacb24。,求证:都为负数,已知2222||,.8babababababa2222222222)()()(||babababababababa证明:22233)())((bababa422443342bbaabbaaba0)(2baab,,0,0baba立。成立,从而原不等式成0)(2baab。,求证:,且已知220,0.933qpqpqp8)(23qpqp证明:8)(333qppqqp2)(qppq33)(qpqppq22qpqppq0)(2qp。;,求证:,且已知)(3)2(3)1(1,,.10cbaabcacbbcacbacabcabRcba3)(23)()1(2222cabcabcbacba,即只需证:证明:,abccbaabcacbbca)2(,而这是成立的。从而只需证:cabcabcba222,中已证得在3)1(cba,只需证:cbaabc1cabcababcacbbca1即,而2acabacabbca。三式相加即得cabcababcacbbca,,同理,22bcacabcbcabacb