平方差公式练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-平方差公式A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5B.6C.-6D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.-2-7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×1913.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.-3-2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006.(2)二变:利用平方差公式计算:22007200820061.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?-4-四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+xn)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.-5-②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.-6-参考答案A卷一、1.D2.C点拨:一个算式能否用平方差公式计算,关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,只有选项C可以用平方差公式计算,故选C.3.D点拨:①(3a+4)(3a-4)=(3a)2-42=9a2-16,②(2a2-b)(2a2+b)=(2a2)2-b2=4a4-b2,③(3-x)(x+3)=32-x2=9-x2,④(-x+y)(x+y)=-(x-y)(x+y)=-(x2-y2)=-x2+y2,故选D.4.C点拨:因为(x+y)(x-y)=x2-y2,又x2-y2=30,x-y=-5,所以-5(x+y)=30,x+y=-6,故选C.二、5.4x2-y2点拨:(-2x+y)(-2x-y)=(-2x)2-y2=4x2-y2.6.-3x2-2y2点拨:因为(-3x2+2y2)(-3x2-2y2)=(-3x2)2-(2y2)2=9x4-4y4,所以本题应填写-3x2-2y2.7.a;b-1点拨:把a+b-1转化为a+(b-1),把a-b+1转化为a-(b-1),可得(a+b-1)(a-b+1)=[a+(b-1)][a-(b-1)]=a2-(b-1)2.8.10点拨:设较大的正方形的边长为a,较小的正方形的边长为b,则a+b=5,a-b=2,所求的面积差为a2-b2,而(a+b)(a-b)=a2-b2,故a2-b2=10.三、9.解:2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.点拨:先把两个因数分别转化成两数的和与这两个数的差,再利用平方差公式计算.10.解:(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.-7-点拨:根据题中因式的结构特征,依次运用平方差公式进行计算.B卷一、1.解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;(2)(3+1)(32+1)(34+1)…(32008+1)-401632=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.2.解:2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.(1)22007200720082006=220072007(20071)(20071)=2220072007(20071)=2007.(2)22007200820061=22007(20071)(20071)1=222007200711=2220072007=1.点拨:把式子中乘积部分的运算通过变形转化为平方差公式的结构形式,然后运用-8-平方差公式化繁为简.二、3.解:x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.三、4.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).答:改造后的长方形草坪的面积是(4a2-9)平方米.四、5.D点拨:A选项a3+a3=2a3;B选项(-a)3·(-a)5=a8;C选项(-2a2b)·4a=-8a3b;D选项正确,故选D.6.a2-1C卷1.(1)1-xn+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.2.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.3.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),由此可验证:(a+b)(a-b)=a2-b2.-9-图1图2

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功