全国高中理科数学常见题型篇(数列的应用)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案知识网络:目标认知考试大纲要求:1.等差数列、等比数列公式、性质的综合及实际应用;2.掌握常见的求数列通项的一般方法;3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题.4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题.重点:1.掌握常见的求数列通项的一般方法;3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题难点:用数列知识解决带有实际意义的或生活、工作中遇到的数学问题.知识要点梳理知识点一:通项与前n项和的关系任意数列的前n项和;注意:由前n项和求数列通项时,要分三步进行:(1)求,(2)求出当n≥2时的,(3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.知识点二:常见的由递推关系求数列通项的方法1.迭加累加法:,则,,…,22.迭乘累乘法:,则,,…,知识点三:数列应用问题1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.2.建立数学模型的一般方法步骤.①认真审题,准确理解题意,达到如下要求:⑴明确问题属于哪类应用问题;⑵弄清题目中的主要已知事项;⑶明确所求的结论是什么.②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).规律方法指导1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意:(1)通过知识间的相互转化,更好地掌握数学中的转化思想;(2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.矚慫润厲钐瘗睞枥庑赖。经典例题精析类型一:迭加法求数列通项公式1.在数列中,,,求.解析:∵,当时,,,3,将上面个式子相加得到:∴(),当时,符合上式故.总结升华:1.在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列.2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得.举一反三:【变式1】已知数列,,,求.【答案】【变式2】数列中,,求通项公式.【答案】.类型二:迭乘法求数列通项公式2.设是首项为1的正项数列,且,求它的通项公式.解析:由题意∴4∵,∴,∴,∴,又,∴当时,,当时,符合上式∴.总结升华:1.在数列中,,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列.2.若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得.举一反三:【变式1】在数列中,,,求.【答案】【变式2】已知数列中,,,求通项公式.【答案】由得,∴,∴,∴当时,5当时,符合上式∴类型三:倒数法求通项公式3.数列中,,,求.思路点拨:对两边同除以得即可.解析:∵,∴两边同除以得,∴成等差数列,公差为d=5,首项,∴,∴.总结升华:1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项.2.若数列有形如的关系,则可在等式两边同乘以,先求出,再求得.举一反三:【变式1】数列中,,,求.6【答案】【变式2】数列中,,,求.【答案】.类型四:待定系数法求通项公式4.已知数列中,,,求.法一:设,解得即原式化为设,则数列为等比数列,且∴法二:∵①②由①-②得:设,则数列为等比数列∴∴∴法三:,,,……,,∴总结升华:71.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.举一反三:【变式1】已知数列中,,求【答案】令,则,∴,即∴,∴为等比数列,且首项为,公比,∴,故.【变式2】已知数列满足,而且,求这个数列的通项公式.【答案】∵,∴设,则,即,∴数列是以为首项,3为公比的等比数列,8∴,∴.∴.类型五:和的递推关系的应用5.已知数列中,是它的前n项和,并且,.(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.解析:(1)因为,所以以上两式等号两边分别相减,得即,变形得因为,所以由此可知,数列是公比为2的等比数列.由,,所以,所以,所以.(2),所以将代入得9由此可知,数列是公差为的等差数列,它的首项,故.(3),所以当n≥2时,∴由于也适合此公式,故所求的前n项和公式是.总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略.举一反三:【变式1】设数列首项为1,前n项和满足.(1)求证:数列是等比数列;(2)设数列的公比为,作数列,使,,求的通项公式.【答案】(1),∴∴,又①-②∴,10∴是一个首项为1公比为的等比数列;(2)∴∴是一个首项为1公比为的等差比数列∴【变式2】若,(),求.【答案】当n≥2时,将代入,∴,整理得两边同除以得(常数)∴是以为首项,公差d=2的等差数列,∴,∴.【变式3】等差数列中,前n项和,若.求数列的前n项和.【答案】∵为等差数列,公差设为,∴,11∴,∴,若,则,∴.∵,∴,∴,∴,∴①②①-②得∴类型六:数列的应用题6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和.解析:设将旗集中到第x面小旗处,则从第一面旗到第面旗处,共走路程为了,回到第二面处再到第面处是,回到第三面处再到第面处是,,从第面处到第面处取旗再回到第面处的路程为,从第面处到第面处取旗再回到第面处,路程为20×2,总的路程为:12∵,∴时,有最小值答:将旗集中到第7面小旗处,所走路程最短.总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程.举一反三:【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为()A.B.C.D.【答案】D;解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为,则【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则该人存款的本金为()A.1.5万元B.2万元C.3万元D.2.5万元【答案】B;解析:本金利息/利率,利息利息税/税率利息(元),本金(元)【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是()13A.5月、6月B.6月、7月C.7月、8月D.9月、10月【答案】C;解析:第个月份的需求量超过万件,则解不等式,得,即.【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少)【答案】设汽车使用年限为年,为使用该汽车平均费用.当且仅当,即(年)时等到号成立.因此该汽车使用10年报废最合算.【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2007年底和2008年底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)【答案】(1)2007年底的住房面积为1200(1+5%)-20=1240(万平方米),2008年底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),∴2007年底的住房面积为1240万平方米;2008年底的住房面积为1282万平方米.(2)2007年底的住房面积为[1200(1+5%)-20]万平方米,2008年底的住房面积为[1200(1+5%)2-20(1+5%)-20]万平方米,2009年底的住房面积为[1200(1+5%)3-20(1+5%)2-20(1+5%)-20]万平方米,…………2026年底的住房面积为[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20]万平方米即1200(1+5%)20―20(1+5%)19―20(1+5%)18―……―20(1+5%)―2014≈2522.64(万平方米),∴2026年底的住房面积约为2522.64万平方米.聞創沟燴鐺險爱氇谴净。高考题萃1.(2008四川)设数列的前项和为.(Ⅰ)求;(Ⅱ)证明:是等比数列;(Ⅲ)求的通项公式.解析:(Ⅰ)因为,∴由知,得①所以,,∴(Ⅱ)由题设和①式知所以是首项为2,公比为2的等比数列.(Ⅲ)2.(2008全国II)设数列的前项和为.已知,,.(Ⅰ)设,求数列的通项公式;(Ⅱ)若,,求的取值范围.解析:(Ⅰ)依题意,,即,15由此得.因此,所求通项公式为,.①(Ⅱ)由①知,,于是,当时,,,当时,.又.综上,所求的的取值范围是.3.(2008天津)已知数列中,,,且.(Ⅰ)设,证明是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.解析:(Ⅰ)由题设,得,即.又,,所以是首项为1,公比为的等比数列.(Ⅱ)由(Ⅰ),,,……,.将以上各式相加,得.16所以当时,上式对显然成立.(Ⅲ)由(Ⅱ),当时,显然不是与的等差中项,故.由可得,由得①整理得,解得或(舍去),于是.另一方面,,.由①可得.所以对任意的,是与的等差中项.4.(2008陕西)已知数列的首项,,.(Ⅰ)求的通项公式;(Ⅱ)证明:对任意的,,;(Ⅲ)证明:.残骛楼諍锩瀨濟溆塹籟。解析:(Ⅰ),,,又,是以为首项,为公比的等比数列.17,.(Ⅱ)由(Ⅰ)知,,原不等式成立.另解:设,则,当时,;当时,,当时,取得最大值.原不等式成立.(Ⅲ)由(Ⅱ)知,对任意的,有.令,则18,.原不等式成立.酽锕极額閉镇桧猪訣锥。学习成果测评基础达标:1.若数列中,且(n是正整数),则数列的通项=____.2.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是____________.3.设是等比数列,是等差数列,且,数列的前三项依次是,且,则数列的前10项和为____________.4.如果函数满足:对于任意的实数,都有,且,则____________5.已知数列中,,(),求通项公式.6.已知数列中,,,,求的通项公式.7.已知各项均为正数的数列的前项和满足,且,19,求的通项公式.8.设数列满足,.(Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和.能力提升:9.数列的前项和为,,.(Ⅰ)求数列的通项;(Ⅱ)求数列的前项和.10.数列的前n项和为,已知是各项为正数的等比数列,试比较与的大小关系.11.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功