全等三角形的判定(SAS)说课稿德化五中苏玉珠一、教材分析:三角形是最常见的几何图形之一,在日常生活中有着广泛的应用。本课是探索三角形全等条件的第二课时,是在学习了全等三角形的判定1-SSS之后展开的。对于全等三角形的研究,实际是平面几何对封闭的两个图形关系研究的第一步,它是两个三角形间最简单、最常见的关系,它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。因此,本节课的知识具有承前启后的作用,占有相当重要的地位。二、学情分析:三角形不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。学生对于研究它的全等的判定有着足够的感知经验,但是也存在着如下的困难。全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前学生所接触的逻辑判断中直观多于抽象,用自己的语言表述多于用数学语言表述。所以怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。三、教学目标:在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想.从而激发学生学习数学的兴趣.为此,我确立如下:1.知识目标:(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程(2)掌握三角形全等的“边角边”的判定方法,能用三角形的全等解决一些实际问题。2.过程与方法:经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验,3.情感与态度:通过“边角边公理”的获得和使用,培养学生严密的逻辑思维品质以及勇于探索、团结协作的精神。教学重点根据本节课的内容和地位,重点确定为:1“边角边公理”的内容及应用教学难点:发现、验证并归纳边角边公理内容,运用此结论解决实际问题。教法分析:鉴于教材特点及初二学生思维依赖于具体直观形象的特点,采用实验发现法,将有利于学生更好地理解与应用数学,获得成功的体验,增强学好数学的信心。本节课主要采用实验发现法,同时以直观演示教学法、观察法、探究法为辅。在教法上,尽可能地组织学生自主地通过观察、实验等数学活动,探究三角形全等的特征,通过对数学问题情境、数学活动情境等设计,调动学生学习数学的积极性。运用多媒体直观演示,化静为动,使学生始终处于主动探索问题的积极状态中,使数学学习变得有趣、有效、自信、成功。学法指导:在课堂教学中尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。四、教学过程设计:(一)创设情境,引入新知1.由生活中遇到的全等问题情境自然引入。2.画一画如果两个三角形的两边和一角分别对应相等,那么会有几种情况。让学生思考、动手画图,从而发现有两种情况:一种情况是角不在两边的中间,形成两边一对角;此时,“举反例”法从而推动学生的另一种唯一性验证思考,即角夹在两边的中间,形成两边夹一角。通过以上的环节主要是提高学生对问题的分析能力和培养学生的动手实践能力。(二)操作交流,初获结论1.做一做已知ΔABC,使AB=10cm,BC=8cm,∠DAB=45°,画一个三角形。(1)小组活动,展示部分小组的解决方案(2)展示解决方案,主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴.2.判定公理SAS及用几何语言的表示判定公理,培养了学生的图形识别能力,直观判断能力和运用几何语言的能力。提示学生:全等三角形对应字母要写在对应位置上。紧跟其后的随堂练习采取课堂提问的方法,以达加深学生的记忆之目的。(三)拓展应用,解决问题通过例题讲解,引导学生学会生活中不可直接测量的事物,可采用三角形全等原理来解决问题。此环节先由学生试着板演过程,然后再由教师给出解题步骤。(四)课堂小结小结:人的认知能力的发展和认知水平的提高在很大程度上得益于深刻的反思活动,此环节采用师生互动、生生互动,共同反思、总结、补充的方式进行。使本节课的知识得以归纳、整理、深化和升华,同时也培养了学生的语言表达和概括能力。(五)布置作业:(1)必做:教科书习题A组1、2、3(2)选做:教科书习题B组1、2(六)板书设计