2020/7/31第三节泰勒(Taylor)中值定理一问题的提出三泰勒(Taylor)中值定理四常用n阶泰勒公式及其简单应用五小结与思考判断题二Pn(x)和Rn(x)的确定2020/7/32一问题的提出1.设)(xf在0x处连续,则有2.设)(xf在0x处可导,则有)()(0xfxf))(()()(000xxxfxfxf])()([0xfxf关系,有根据极限与无穷小量的))(()()()(0000xxxfxxfxfxfdyy)())(()()(0000xxOxxxfxfxf2020/7/33不足问题寻找函数)(xP,使得)()(xPxf误差)()()(xPxfxR可估计1、精确度不高;2、误差不能估计。设函数)(xf在含有0x的开区间),(ba内具有直到)1(n阶导数,)(xP为多项式函数误差)()()(xPxfxRnnxxxexxxx)1ln(,1,sin,0nnnxxoxxaxxaaxf)()()()(00010)(xPn)(xRn2020/7/34二nP和nR的确定0x)(xfyoxy分析:)()(00xfxPn)()(00xfxPn)()(00xfxPn2.若有相同的切线3.若弯曲方向相同近似程度越来越好1.若在点相交0x2020/7/35假设nkxfxPkkn,,2,1)()(0)(0)(),(00xfa代入)(xPn中得nnnxxnxfxxxfxxxfxfxP)(!)()(!2)())(()()(00)(200000得),,2,1,0()(!10)(nkxfkakk),(101xfa)(!202xfa,)(!0)(xfannn2020/7/36三泰勒(Taylor)中值定理泰勒(Taylor)中值定理如果函数)(xf在含有0x的某个开区间),(ba内具有直到)1(n阶的导数,则当x在),(ba内时,)(xf可以表示为)(0xx的一个n次多项式与一个余项)(xRn之和:)()(!)()(!2)())(()()(00)(200000xRxxnxfxxxfxxxfxfxfnnn其中10)1()()!1()()(nnnxxnfxR(在0x与x之间).2020/7/37证明:由假设,)(xRn在),(ba内具有直到)1(n阶导数,且两函数)(xRn及10)(nxx在以0x及x为端点的区间上满足柯西中值定理的条件,得)())(1()(0011之间与在xxxnRnn0)()()()()(10010nnnnnxxxRxRxxxR0)()()()(0)(000xRxRxRxRnnnnn2020/7/38如此下去,经过)1(n次后,得两函数)(xRn及nxxn))(1(0在以0x及1为端点的区间上满足柯西中值定理的条件,得0))(1()()())(1()(0101011nnnnnxnxRRxnR!1)()()()1(10nRxxxRnnnn(之间与在nx0,也在0x与x之间))())(1()(1021022之间与在xxnnRnn2020/7/39nkkknxxkxfxP000)()(!)()(称为)(xf按)(0xx的幂展开的n次近似多项式nknkkxRxxkxfxf000)()()(!)()(称为)(xf按)(0xx的幂展开的n阶泰勒公式)()(!1)()(010)1(之间与在xxxxnfxRnnn则由上式得,0)()1(xPnn)()()1()1(xfxRnnn2020/7/310定理1(带lagrange余项的泰勒定理)如果f(x)在点邻域内有n+1阶导数,则x0)()(!)()(!2)())(()()(00)(200000xRxxnxfxxxfxxxfxfxfnnn其中10)1()()!1()()(nnnxxnfxR(在0x与x之间).拉格朗日形式的余项2020/7/3111.当0n时,泰勒公式变成拉氏中值公式)())(()()(000之间与在xxxxfxfxf2.取00x,在0与x之间,令)10(x则余项1)1()!1()()(nnnxnxfxR几点说明:2020/7/312nnxnfxfxffxf!)0(!2)0()0()0()()(21)1()!1()(nnxnf)1,0(,(2)00x(麦克劳林公式)2020/7/313四常用n阶泰勒公式及其简单应用例1求xexf)(的n阶麦克劳林公式.解,)()()()(xnexfxfxf1)0()0()0()0()(nffffxnexf)()1(注意到).10()!1(!!2112nxnxxnenxxxe).10()!1()!1()(1nxxnxnenexR2020/7/314!!212nxxxenx!1!2111,1nex取.)!1(3n)!1(neRn2020/7/315)2sin()()(nxxfn解:)2sin()0(1)0(,0)0(,1)0(,0)0()(nfffffnRmmmxxxxxx212753)!12(!7!5!3sin122)!12(]2)12(sin[mmxmmxR)10(例2求的n阶麦克劳林公式.xxfsin)(2020/7/316xxmsin,13!31sin,2xxxm53!51!31sin,3xxxxm0123400.51trace1sin()xxxysinxyxxy3!31xxxy53!51!312020/7/317例3求xxxfln)(3在x=1点的四阶泰勒公式;1)1(,ln3)(,0)1(22fxxxxff2)5()4()4(6)(;6)1(,6)(;11)1(,11ln6)(;5)1(,5ln6)(xxffxxffxxffxxxxf)1)1)15)5(4)4(2(!5)((!4)1((!2)1()1)(1()1()(xxfxffxffxf2020/7/318例4:求极限3)1(sinlimxxxxexx)(!3!21332xoxxxex)(!3sin33xoxxx3)1(sinlimxxxxexx333332)1()(!3)(!3!21limxxxxoxxxoxxxx3333)(!3!2limxxoxxx612020/7/319罗尔定理Lagrange定理柯西定理泰勒公式罗必塔法则条件,结论五小结与思考判断题2020/7/320其它函数的麦克劳林公式)()!12()1(!5!3sin221253nnnxonxxxxx)()!2()1(!6!4!21cos22642nnnxonxxxxx)(1)1(32)1ln(1132nnnxonxxxxx)(1112nnxoxxxx)(!)1()1(!2)1(1)1(2nnmxoxnnmmmxmmmxx2020/7/321435)4(234xxxxx的乘幂展开多项式按思考判断题