陕西省西安市碑林区西北工大附中2018-2019学年八年级(下)期末数学试卷--解析版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018-2019学年八年级(下)期末数学试卷一.选择题(共10小题)1.下列四个图形中,既是轴对称图形是中心对称图形的是()A.B.C.D.2.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3B.﹣5x>﹣5yC.﹣D.x2<y23.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等4.已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是()A.﹣1B.2C.﹣1或3D.35.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3+3C.6+3D.66.若关于x的分式方程无解,则a的值为()A.B.2C.或2D.或﹣27.如图,正方形ABCD的边长为3,对角线AC、BD相交于点O,将AC向两个方向延长,分别至点E和点F,且AE=CF=3,则四边形BEDF的周长为()A.12B.12C.24D.208.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5B.x<﹣2C.﹣2<x<5D.﹣2<x<19.如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为()A.2B.6C.3或6D.2或3或610.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2B.13C.2+6D.26二.填空题(共4小题)11.分解因式:9x2y﹣6xy+y=.12.正八边形一个内角的度数为.13.已知关于x的方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,则m的取值范围是.14.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD=4,连接BD,取BD的中点E,连接CE,则CE的最大值为.三.解答题(共9小题)15.求不等式组的正整数解.16.先化简,再求值:(+a﹣2)÷,其中a=+1.17.解方程:(1)(2)2x2﹣4x+1=018.如图,在Rt△ABC中,∠ACB=90°,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)19.如图,在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.20.家乐商场销售某种衬衣,每件进价100元,售价160元,平均每天能售出30件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1元,其销量就增加3件.商场想要使这种衬衣的销售利润平均每天达到3600元,每件衬衣应降价多少元?21.如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BM、BC于点P、O、Q,连接BP、QE(1)求证:四边形BPEQ是菱形:(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.22.为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.(1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):(2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.23.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.参考答案与试题解析一.选择题(共10小题)1.下列四个图形中,既是轴对称图形是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、既是轴对称图形是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.若x<y,则下列结论不一定成立的是()A.x﹣3<y﹣3B.﹣5x>﹣5yC.﹣D.x2<y2【分析】根据不等式的性质解答.【解答】解:A、不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项错误.B、不等式x<y的两边同时乘以﹣5,不等号方向改变.即:﹣5x>﹣5y,故本选项错误.C、不等式x<y的两边同时乘以﹣,不等号方向改变.即:﹣x>﹣y,故本选项错误.D、不等式x<y的两边没有同时乘以相同的式子,故本选项正确.故选:D.3.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等【分析】根据菱形的对角线性质,即可得出答案.【解答】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,∴菱形的对角线不一定具有的性质是相等;故选:D.4.已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是()A.﹣1B.2C.﹣1或3D.3【分析】根据一元二次方程定义可得a﹣3≠0,|a﹣1|=2,再解即可.【解答】解:由题意得:a﹣3≠0,|a﹣1|=2,解得:a=﹣1,故选:A.5.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12B.3+3C.6+3D.6【分析】利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC.【解答】解:∵AB的中垂线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6,CD=.BC=BD+CD=6+3故选:C.6.若关于x的分式方程无解,则a的值为()A.B.2C.或2D.或﹣2【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【解答】解:去分母得:2x+2a+ax﹣2a=1,整理得:(a+2)x=1,由分式方程无解,得到a+2=0或x==2,解得:a=﹣2或a=﹣,故选:D.7.如图,正方形ABCD的边长为3,对角线AC、BD相交于点O,将AC向两个方向延长,分别至点E和点F,且AE=CF=3,则四边形BEDF的周长为()A.12B.12C.24D.20【分析】根据正方形的性质,可知其对角线互相平分且垂直;由正方形的边长,可求得其对角线长;再由已知AE=CF=3,可得OE=OF,从而四边形BEDF为菱形;由勾股定理求得该菱形的一条边,再乘以4即可求得四边形BEDF的周长.【解答】解:∵四边形ABCD为正方形∴AC⊥BD∵正方形ABCD的边长为3,∴AC=BD===6∴OA=OB=OC=OD=3∵AE=CF=3∴OE=OF=6∴四边形BEDF为菱形∴BE==则四边形BEDF的周长为4×=故选:A.8.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5B.x<﹣2C.﹣2<x<5D.﹣2<x<1【分析】y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【解答】解:y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,不等式组的解集即为:x<﹣2,故选:B.9.如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为()A.2B.6C.3或6D.2或3或6【分析】①当点B′落在矩形内部时,连接AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△B′EC为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时.此时四边形ABEB′为正方形.【解答】解:当△B′EC为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△B′EC为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△B′EC中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故选:C.10.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2B.13C.2+6D.26【分析】利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.【解答】解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,∴C′D′⊥BE,∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=13.故选:B.二.填空题(共4小题)11.分解因式:9x2y﹣6xy+y=y(3x﹣1)2.【分析】首先提公因式y,再利用完全平方公式进行二次分解.【解答】解:原式=y(9x2﹣6x+1)=y(3x﹣1)2,故答案为:y(3x﹣1)2.12.正八边形一个内角的度数为135°.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.13.已知关于x的方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,则m的取值范围是m<2且m≠1.【分析】由关于x的方程(m﹣1)x2﹣2x+1=0有两个不相等的实数根,根据△的意义得到m﹣1≠0,且△>0,即4﹣4(m﹣1)>0,解不等式组即可得到m的取值范围.【解答】解:∵关于x的方程(m﹣1)x2﹣2x+1=0有两个不相等

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功