9.2一元一次不等式第2课时1.掌握用一元一次不等式解决实际问题的步骤;2.培养将实际问题向数学模型转化的能力.3.初步认识一元一次不等式的应用价值,发展分析问题、解决问题的能力.甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获得更大优惠?甲商店优惠方案的起点为购物款元后乙商店优惠方案的起点为购物款元后分类讨论:1.如果累计购物不超过50元,则在两店购物花费有区别吗?2.如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?10050(消费一样)(购买同样商品在乙店购物省钱)3.如果累计购物超过100元,则在甲店购物花费小吗?设累计购物x元,如果在甲店购物花费小,则去括号,得移项、合并同类项,得系数化为1,得)100(9.0100)50(95.050xx909.01005.4795.050xx150x5.705.0x就是说当购物超过_______元时在甲店购物花费小。150解决较复杂问题时,常需要分不同情况进行讨论.【例】在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一题扣5分,不答得0分,小玲有一道题没有答,成绩仍然不低于60分,她至少答对几道题?【分析】答对题得的分数-答错题扣的分数≥60分.【解析】设小玲答对的题数是x,则答错的题数是9-x,根据题意,得10x-5(9-x)≥60解这个不等式,得x≥7答:她至少答对7道题.想一想:小玲有几种答题可能?小玲有3种答题可能,分别是答对7道题,答错2道题,有1道题未答;答对8道题,答错1道题,有1道题未答;答对9道题,有1道题未答.我班几个同学合影留念,每人交0.70元.已知一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱尽量用掉的前提下,这张相片上的同学最少有几人?【解析】设这张相片上的同学有x人,根据题意,得0.70x≥0.68+0.50x解得x≥3.4因为x为正整数,所以x=4.答:这张相片上的同学最少有4人.1.(临沂·中考)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯最大负荷1050kg,则该电梯在此3人乘坐的情况下最多能搭载捆材料.【解析】设可搭载x捆材料,列不等式210+20x≤1050,解得:x≤42.即最多可搭载42捆材料.【答案】422.小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元,如果她钢笔和笔记本共买了8件,每一种至少买一件,则她有多少种购买方案?【解析】设她买了x支钢笔,则笔记本为(8-x)本,由题意,得4.5x+3(8-x)≤30解得x≤4所以x=4或3或2或1.因为x为正整数,答:小兰有4种购买方案,①4支钢笔和4本笔记本,②3支钢笔和5本笔记本,③2支钢笔和6本笔记本,④1支钢笔和7本笔记本.3.(广州·中考)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解析】(1)120×0.95=114(元).实际应支付114元.(2)设所购买的商品的价格为x元时,采用方案一更合算,根据题意,得0.95x>0.8x+168,解这个不等式,得x>1120.所以小敏所购买商品的价格至少为1120元时,采用方案一更合算.实际问题设未知数找出不等关系列不等式解不等式结合实际确定答案应用一元一次不等式解实际问题的步骤:通过本课时的学习,需要我们掌握:速度就是一切,它是竞争不可或缺的因素。