2.1 认识一元二次方程(二)演示文稿

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章一元二次方程第2节认识一元二次方程(二)对于一元二次方程(1)(8-2x)(5-2x)=18即:2x2-13x+11=0;(2)(x+6)2+72=102即:x2+12x-15=0,你能分别求出方程中的x吗?一、复习回顾4二、情境引入(1)有一根外带有塑料皮长为100m的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速地找到这一断裂处?与同伴进行交流。4二、情境引入85xxxx(8-2x)18m25(2)幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?解:设所求的宽度为xm,根据题意,可得方程(8-2x)(5-2x)=18即:2x2-13x+11=04二、情境引入对于方程(8-2x)(5-2x)=18,即2x2-13x+11=0(1)根据题目的已知条件,你能确定x的大致范围吗??说说你的理由.(2)x可能小于0吗?x可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.(3)完成下表:(4)你知道所求的宽度x(m)是多少吗?还有其他求解方法吗?与同伴进行交流.2x2-13x+1121.510.50x2.54二、情境引入用“夹逼”思想解一元二次方程的步骤:①在未知数x的取值范围内排除一部分取值;②根据题意所列的具体情况再次进行排除;③列出能反映未知数和方程的值的表格进行再次筛选;④最终得出未知数的最小取值范围或具体数据。三、做一做如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?x8m17m6m在上一节课的问题中,梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,把这个方程化为一般形式为x2+12x-15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)小明认为底端也滑动了1m,他的说法正确吗?为什么?(3)底端滑动的距离可能是2m吗?可能是3m吗?为什么?(4)x的整数部分是几?十分位是几?三、做一做三、做一做x2+12x-151325.251.5-21-8.750.5-150x甲同学的做法:所以1<x<1.5三、做一做x2+12x-151325.251.5-21-8.750.5-150x进一步计算:所以1.1<x<1.2因此x的整数部分是1,十分位是1。三、做一做x2+12x-155.251.53.761.42.291.30.841.2-0.591.1x乙同学的做法:所以1.1<x<1.2因此x的整数部分是1,十分位是1。四、练一练五个连续整数,前三个数的平方和等于后两个数的平方。您能求出这五个整数分别是多少吗?四、练一练A同学的做法:设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1,x+2,x+3,x+4.根据题意,可得方程:x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2即:x2-8x-20=0x2-8x-20010-119……0-213-3x所以,x=-2或x=10四、练一练B同学的做法:设五个连续整数中的中间一个数为x,那么其余四个数依次可表示为x-2,x-1,x+1,x+2.根据题意,可得方程:(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2即:x2-12x=0x2-12x010-119……0-213-3x所以,x=0或x=12五、课堂小结通过本堂课你有哪些收获?谈谈你的感想。六、作业课本47页习题2.21题、2题

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功