·杭州市地铁1号线武—艮区间(10、11号盾构)盾构施工控制测量方案编制:审核:批准:中铁隧道集团有限公司杭州地铁1号线武—艮盾构区间项目经理部二00九年一月杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-1-控制测量方案一、编制依据1、杭州市地铁1号线工程武—艮区间(10、11号盾构)施工设计图及有关说明;2、杭州市地铁1号线工程武—艮区间(10、11号盾构)控制点复测成果书(2008年7月21日复测资料);3、《地下铁道、轻轨交通工程测量规范》GB50308—2002;4、《城市测量规范》CJJ8—99;5、《新建铁路工程测量技术规范》TB10101—99;6、《城市轨道交通工程测量规范》GB50308-2008;7、《建筑变形测量规范》JGJ8-2007;8、《工程测量规范》GB50026-93;9、《市政地下工程施工及验收规程》DGJ08-236-1999;10、《盾构法隧道施工及验收规范》GB50446-2008;11、杭州地铁公司发布的地铁工程施工测量管理细则。二、工程概况2.1、工程位置本工程位于杭州市下城区,由2个盾构区间组成,划分为3个单位工程。即1号线武林广场站~文化广场站区间隧道工程、1号线文化广场站~艮山门站区间隧道工程、3号线武林广场站~文化广场站区间隧道工程。其中武林广场站~文化广场站区间为1、3号线四条单线隧道交叉并行。杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-2-2.2、设计情况【武~文】区间1号线起讫里程为K15+620.882~K16+193.476(左K16+187.350),左、右线的线路长分别为:566.528m和572.654m;3号线起讫里程为K15+620.882~K16+179.361(左K16+173.08),左、右线的线路长分别为:552.259m和558.539m。本区间的1、3号线分别为4条单线隧道,隧道线路在空间上相互交叉重叠,最小净间距为4.063m。1号线平面分别由直线段和两组缓和曲线组成,左线曲线半径为分别600m、500m;右线曲线半径分别为400m、400m。3号线平面由直线段和三组缓和曲线组成(右线由直线段和两组缓和曲线组成),左线曲线半径分别为500m、400m、1000m;右线曲线半径分别为400m、500m。1号线左线隧道纵断面先以2‰下坡出站(右线以2‰上坡出站),然后以11.985‰及28‰的上坡(右线以21.937‰的下坡),最后以2‰的下坡进站(右线以2‰的上坡进站)。3号线左线隧道纵断面先以2‰的下坡出站后(右线14‰的上坡出站),以4.852‰的上坡(右线先以30‰的下坡再以17.672‰的上坡),最后以2‰的下坡进站。1号线竖曲线半径最大为5000m,最小为3000m,3号线竖曲线半径最大为5000m。隧道拱顶埋深1号线为9.5~17m,3号线为6.7~18m。【文~艮】区间起讫里程为K16+461.556~K17+539.118(左K17+562.378),左、右线的线路长分别为:1100.822m、1077.562m。区间左线由直线段和三组缓和曲线组成(右线由直线段和三组缓和曲线组成),左线曲线半径分别为330m、1000m、600m(右线曲线半径杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-3-分别为350、1000m、600m)。区间隧道左线以27.291‰(右线以27.254‰)的下坡出站后达最低点,以17‰的上坡(右线以3‰的上坡),最后以2‰的下坡进站。线路呈节能V型。本区间竖曲线半径最大为5000m,最小为3000m。隧道拱顶埋深为10.8~22.5m。2.3、技术标准1)结构设计使用年限为100年。2)结构的安全等级为一级。3)结构按7度抗震设防。4)结构设计按6级人防验算。5)衬砌结构变形验算:计算直径变形≤2‰D(D为隧道外径)。6)管片结构允许裂缝开展,但裂缝宽度≤0.2mm。7)结构抗浮安全系数不得小于1.05。8)盾构区间隧道防水等级为二级。三、施工测量流程仪器检测→交桩及控制点复测→测量方案及审批→机载仪器测量→人工复测→监理、建设方复测→施工过程中复测→竣工测量。四、施工平面控制测量4.1、施工平面控制网的布置原则(1)、工程测量放样的程序,遵守由总体达到局部的原则;(2)、控制点应满足整体控制要求;(3)、控制点应埋设在牢固不易破坏的位置;(4)、控制点相互之间必须通视,不能满足通视要求应合理设置工作点;杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-4-(5)、控制点数据采集后需进行闭合,并进行平差计算;(6)、严格控制限界要求,满足设备安装要求,放样时需掌握“宁大勿小”的原则,利用后续工程加以适当调整;(7)、放样后,对所放点妥善保护,定期检验。4.2、平面控制网建立(1)、利用杭州市地铁1号线工程武—艮区间(10、11号盾构)控制点复测成果引测二级精密控制网,此控制点宜布置在工作井的周围屋顶或距工作井较远且无沉降的区域,所有二级精密导线控制点应形成一个闭合,且满足规范精度要求。(2)、平面加密控制网的完善,在监理确认二级平面控制网的情况在拟建工作井四周布设加密控制点.(3)、平面控制网的计算根据需要采用严密或简化方法平差,当采用简化方法平差时,应以平差后坐标反算的角度和边长作为成果。(4)、检查频率与要求二级精度控制网的点位,原则上应与交桩点一样,每二个月复核一次;地面加密控制点布置后进行复核;基线及始发前的圆心定位及地下高程点完成后进行复核;地下导线点及水准点在隧道掘进至50m处、200—300m处和距离贯通面150—200m处分别进行一次包括联系测量在内的检测(若开挖长度超过1km时,掘进至500m处要增加一次检测);隧道开挖接近贯通面时,应对隧道内的控制点进行一次全面检测。杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-5-五、施工高程控制测量5.1、施工高程控制网布置原则(1)、工程测量放样的程序,遵守由总体到局部的原则;(2)、控制点应满足整体控制要求;(3)、控制点应埋设在不易破坏的位置;(4)、控制点相互之间必须通视,不能满足通视要求应合理设置工作点。5.2、高程控制网的建立(1)、临时水准点布设根据本工程的的特征,地面水准点沿工作井长度方向均匀设置,与交桩点形成附合路线,地下水准点设定在隧道内衬上弦右侧螺丝孔位上,精度采用精密水准测量的主要技术要求,闭合差≤±8L。(2)、水准点应选在土质坚硬便于长期保存和使用方便的地点,并做好警示保护标志。(3)、两次观测高差较差超限时应重测,测量最后成果精确到1mm。(4)、水准间的计算,应按最小二乘法原理,采用条件观测平差或间接观测平差,并应计算每4米高差全中误差。(5)、检查频率与要求高程点与平面控制点的检查频率一致。(6)、所有高程控制网精度要求按规范执行。六、各分部、分项工程的施工测量控制杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-6-6.1、建立地面控制网地面控制点的布设,必须因地制宜,既从当前工程建设需要出发,又适当考虑竣工需要。地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终点横向点位误差(终点的横向位移)。终点的横向点误差是测角误差和边长误差共同影响的结果,建立地面控制网应要求按照规范规定进行布设,完成地面控制网后及时请监理及业主测量队进行复测,待复测确定各控制点无误后方可投入使用。6.2、竖井联系测量隧道工程盾构掘进机通过竖井出洞后进行地下掘进工作,为了保证盾构掘进机沿设计轴线正确掘进,必须将地面控制网中的坐标、方向及高程经竖井传递到地下去,使地下平面控制网与地面上有同一的坐标系统。竖井定向的误差对隧道贯通有一定的影响,其中坐标传递的误差将使地下导线的各点产生同一数值的位移,其对贯通的影响是一个常熟;方向角传递的误差,将使地下导线各边方向角转动一个误差值,它对贯通的影响将随着导线长度的增大而增大。竖井联系测量对于隧道能否顺利贯通有着相当大的影响,进行连续测量过程中应严格按照规范要求进行仪器操作,确保地下控制点的精度。6.3、地下控制测量杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-7-6.3.1.地下导线测量地下导线测量的目的是以必要的精度按照地面与控制测量统一的坐标系统,建立地下的控制系统,根据地下导线的坐标,即可放样出隧道轴线,指导盾构掘进方向,确保盾构沿理论轴线跟踪,地下导线点的起始点通常设在隧道衬砌的上弦位置。布设地下导线时,为确保盾构在土层中掘进姿态的正确性,导线点应满足必要的精度与一定的密度,为了减少两者在敷设时的矛盾,通常采用分级布设的方法,即施工导线,基本导线和主要导线。施工导线:盾构出洞后向前掘进时,用以进行放样而指引盾构掘进的导线测量,施工导线边长25~50m;基本导线:当掘进100~200m时,为了检查隧道轴线与设计轴线是否相符合,必须选择部分施工导线点敷设边长较长(50~100m)、精度要求较高的基本导线;主要导线:当隧道长度大于1km时,基本导线将不能保证应有贯通精度,这时就要选择一部分基本导线点来敷设主要导线,主要导线的边长为150~350m。最后一个导线点离开贯通工作面的距离不应过大,一般为60~80m,导线点的编号应按照有关技术规范,尽量做到号码简单又能按次序排列,使用方便,利于寻找,便于分析。因为地下导线是布设成支导线的形式,而且每测一个新点中间要隔一段时间,这样就需要在每次测定新点时,将以前的点位进行检核测量,不论是直线或曲线,都必须对角度、边长进行检核测量,根据检核测量的结果,证明杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-8-标志没有发生变动,就将各次观测的结果取平均值,如果证明标志有变动,则应根据最后一次观测的结果进行计算。6.3.2.地下水准测量地下水准作业方法与地面水准测量相同,常采用中间法进行测定。由于隧道内光线暗淡,通视条件差,仪器到水准尺的距离不宜过大,并用目估法使其相等(前距等于后距)。定期检查地下水准点标志稳定性,应定期地根据地面水准点进行重复的水准测量,将所测的高差成果进行分析比较,根据分析的结果,若水准标志无变,则取所有高差的平均值作为高差成果,若出现水准点标志变动,则应取最近一次测量成果。6.4、盾构施工测量隧道施工过程中,测量人员的主要任务是随时确定盾构掘进方向,一般采用中线法。中线法确定盾构掘进方向,其方法是首先用经纬仪根据导线点设置中线点。如图6-1所示,图中P3,P4为导线点,A为隧道中线点,已知P3,P4的实测坐标及A的设计坐标和隧道中线的设计方位角。根据上述已知数据,即可推算出放样中线点A所需的有关数据β4,L与βA。杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-9-图6-1盾构姿态测量求得有关数据后,即可将经纬仪置于导线点P4,后视P3点,拨角度β4,并在视线方向上丈量距离L,即得中线点A。在A点安置仪器对中盘,再实测A点坐标,无误后,即旋紧对中盘固定螺丝。将仪器安置于A点,后视导线点P4,拨角度βA,即得中线方向指使盾构掘进开挖。随着开挖面向前推进(盾构推进),A点距离开挖面(盾构)越来越远,这时,仪器置于D点,后视A点,用正倒镜或转180o的方法继续标定出中线方向,指使盾构掘进开挖,AD之间的距离在隧道直线段不宜超过100m,在曲线段不宜超过50m。6.5、洞门圈及盾构基座放样利用在井口的控制点用导线直传的方法,在井底设临时点位,以此点设站测洞门圈的横径和平面坐标,并求出洞门圈的平面中心坐标,计算洞门圈的平面偏差值。利用高程传递至井底的临时水准点,测量洞门圈的圈底高程,圈顶高程,求出洞门圈直径和高程偏差值。盾构基座的放样是很重要的,这关系到盾构出洞后轴线的控制,因此,在放样前应根据轴线的要求,与项目工程师商讨放样的具体要杭州地铁1号线武—艮区间(10、11号盾构)盾构控制测量方案-10-求并征得其认可。在放样过程中,采用将洞门圈的中心和盾构基座的前后中心三点在同一竖直面