精品初中试卷6.1二次函数(1)教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m)12面积y(m2)482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?精品初中试卷在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0<x<10=化为:y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.四、课堂练习1.(口答)下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1(3)y=2x3-3x2(4)y=5x4-3x+12.P3练习第1,2题。五、小结1.请叙述二次函数的定义.2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。精品初中试卷六、作业:略6.2二次函数的图象与性质(1)[教学目标]会用描点法画出二次函数2axy的图象,概括出图象的特点及函数的性质.[教学过程][新课引入]我们已经知道,一次函数12xy,反比例函数xy3的图象分别是、,那么二次函数2xy的图象是什么呢?(1)描点法画函数2xy的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数2xy的图象,你能得出什么结论?[例题精讲]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22xy(2)22xy解列表x…-3-2-10123…22xy…188202818…22xy…-18-8-20-2-8-18…分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:22xy的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.精品初中试卷22xy的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.例2.已知42)2(kkxky是二次函数,且当0x时,y随x的增大而增大.(1)求k的值;(2)求顶点坐标和对称轴.解(1)由题意,得02242kkk,解得k=2.(2)二次函数为24xy,则顶点坐标为(0,0),对称轴为y轴.例3.已知正方形周长为Ccm,面积为Scm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1cm2时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得)0(1612CCS.列表:C2468…2161CS411494…描点、连线,图象如图26.2.2.(2)根据图象得S=1cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4cm2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分.[当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.精品初中试卷(1)23xy(2)23xy(3)231xy2.(1)函数232xy的开口,对称轴是,顶点坐标是;(2)函数241xy的开口,对称轴是,顶点坐标是.3.已知等边三角形的边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图.6.2二次函数的图象与性质(2)[教学目标]会画出kaxy2这类函数的图象,通过比较,了解这类函数的性质.[教学过程][例题精讲]例1.在同一直角坐标系中,画出函数22xy与222xy的图象.解列表.描点、连线,画出这两个函数的图象,如图26.2.3所示.x…-3-2-10123…22xy…188202818…222xy…20104241020…精品初中试卷回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22xy与222xy的图象之间的关系吗?例2.在同一直角坐标系中,画出函数12xy与12xy的图象,并说明,通过怎样的平移,可以由抛物线12xy得到抛物线12xy.解列表.描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线12xy是由抛物线12xy向下平移两个单位得到的.回顾与反思抛物线12xy和抛物线12xy分别是由抛物线2xy向上、向下平移一个单位得到的.探索如果要得到抛物线42xy,应将抛物线12xy作怎样的平移?x…-3-2-10123…12xy…-8-3010-3-8…12xy…-10-5-2-1-2-5-10…精品初中试卷回顾与反思kaxy2(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:kaxy2开口方向对称轴顶点坐标0a0a[当堂课内练习]1.在同一直角坐标系中,画出下列二次函数的图象:221xy,2212xy,2212xy.观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线kxy221的开口方向及对称轴、顶点的位置吗?2.抛物线9412xy的开口,对称轴是,顶点坐标是,它可以看作是由抛物线241xy向平移个单位得到的.3.函数332xy,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.6.2二次函数的图象与性质(3)[教学目标]会画出2)(hxay这类函数的图象,通过比较,了解这类函数的性质.[教学过程][新课引入]我们已经了解到,函数kaxy2的图象,可以由函数2axy的图象上下平移所得,那么函数2)2(21xy的图象,是否也可以由函数221xy平移而得呢?画图试一试,你能从中发现什么规律吗?[例题精讲]精品初中试卷例1.在同一直角坐标系中,画出下列函数的图象.221xy,2)2(21xy,2)2(21xy,并指出它们的开口方向、对称轴和顶点坐标.解列表.描点、连线,画出这三个函数的图象,如图26.2.5所示.它们的开口方向都向上;对称轴分别是y轴、直线x=-2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).回顾与反思对于抛物线2)2(21xy,当x时,函数值y随x的增大而减小;当x时,函数值y随x的增大而增大;当x时,函数取得最值,最值y=.探索抛物线2)2(21xy和抛物线2)2(21xy分别是由抛物线221xy向左、向右平移两个单位得到的.如果要得到抛物线2)4(21xy,应将抛物x…-3-2-10123…221xy…29221021229…2)2(21xy…2102122258225…2)2(21xy…225829221021…精品初中试卷线221xy作怎样的平移?例2.不画出图象,你能说明抛物线23xy与2)2(3xy之间的关系吗?解抛物线23xy的顶点坐标为(0,0);抛物线2)2(3xy的顶点坐标为(-2,0).因此,抛物线23xy与2)2(3xy形状相同,开口方向都向下,对称轴分别是y轴和直线2x.抛物线2)2(3xy是由23xy向左平移2个单位而得的.回顾与反思2)(hxay(a、h是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:2)(hxay开口方向对称轴顶点坐标0a0a[当堂课内练习]1.画图填空:抛物线2)1(xy的开口,对称轴是,顶点坐标是,它可以看作是由抛物线2xy向平移个单位得到的.2.在同一直角坐标系中,画出下列函数的图象.22xy,2)3(2xy,2)3(2xy,并指出它们的开口方向、对称轴和顶点坐标.6.2二次函数的图象与性质(4)[教学目标]1.掌握把抛物线2axy平移至2)(hxay+k的规律;精品初中试卷2.会画出2)(hxay+k这类函数的图象,通过比较,了解这类函数的性质.[教学过程][新课引入]由前面的知识,我们知道,函数22xy的图象,向上平移2个单位,可以得到函数222xy的图象;函数22xy的图象,向右平移3个单位,可以得到函数2)3(2xy的图象,那么函数22xy的图象,如何平移,才能得到函数2)3(22xy的图象呢?[例题精讲]例1.在同一直角