陕西中医学院硕士学位论文纳米纤维素晶体的制备及其在造纸中的应用姓名:吴开丽申请学位级别:硕士专业:制浆造纸工程指导教师:徐清华20100520INCCNCCNCCX-XRDPCDAFMNCC64wt%NCC23.32%-33.56%AFMXNCC80%NCC100NCCMCCNCCNCC80000IU/g4dpH4.850NCC18.37%3--2-CHTMACNCCpHNCCpHNCCNCCNCCNCCNCCNCCNCCCPAMNCCIABSTRACTDevelopmentandutilizationofrenewableresourcesfullybecomeinevitabletrend,underthecurrentsituationoftheexhaustingnon-renewableresourcessuchascoal,oilandnaturalgas.Naturalcelluloseisthemostabundantbiomassresourcesinnature,andisthemostpopularbiologicalmacromolecular,whichexistsinvariousorganismssuchasbacteriaandsomeplants,animals,etc.Nanocrystallinecellulose(NCC)extractedfromnaturalfiberisnanoscalecellulose,whichnotonlyhasthefeaturesofnanoparticles,butalsohassomeuniquestrengthandopticalproperties.Ithaswideapplicationprospects.SulfuricacidhydrolysisandenzymehydrolysismethodareusedrespectivelytoprepareNCCinthethesis.ThesurfacemorphologyandopticalpropertiesofNCCextractedfrombleachedhardwoodkraftpulpbysulfuricacidhydrolysiswereinvestigatedbyX-raydiffraction(XRD),particlechargedetector(PCD)atomicforcemicroscopy(AFM)andpolarizedlightmicroscopy.Theeffectsofhydrolysisconditionsonthecrystallinity,yieldandsurfacechargedensitywerealsostudied.Theexperimentalresultsdemonstratethatreactiontemperatureandacid-to-pulpratiohasadecisiveinfluenceonthepropertiesandyieldofNCC.Ayieldbetween23.32%and33.56%couldbeextractedusing64wt%sulfuricacid.TheobservationfromAFMshowsthatthepreparedNCCsareparallelepipedrod-likestructureswithcross-sectionaldimensionsinthenanometerrangewithhighaspectratioandhighcrystallinity(over80%).WhensuspensionsofNCCinwaterareallowedtoevaporateonYattria-stabilizedZirconiasingle-crystal(100)surface,afilmwithtypicalopticalpropertiesisformed.Thefilmreflectscircularlypolarizedlightthatchangescolorwithviewingangle,whenobservedinpolarizedlightmicroscope.ThetechnologicalconditionsofthepreparationofNCCusingenzymehydrolysismethodisexplored.ResearchfoundthatwhiteuniformNCCsuspensioncanbehardlypreparedusingMCCasthesubstratewhenchangethedosageandspeciesoftheenzyme,buttheyiledofNCCisverylow.Usingbleachingsoftwoodsulphatepulpasthesubstrate,18.37%yieldofNCCwithnosurfacechargecanbepreparedwithcellulase.ThecellulaseusedisfromImprerialJadeBio-technologyco.,LTD.,anditsactivityunitis10000IU/g,thereactionconditionisthatthecellulasedosageis80000IU/gabsolutelydrypulp,pH4.8,hydrolysistimeforfourdays,temperature50.3-Chloro-2-hydroxypropyltrimethylammoniumchlorideCHTMACandboricacidareusedrespectivelyincationandanionmodificationofNCC.Theappropriatetechnologyconditionsofmodificationareexplored.ResearchfoundthatthesurfaceABSTRACTIIchargedensityofmodifiedNCCdecreasedasthepHincreased.ThephysicalandchemicalpropertiesofmodifiedNCCarepreliminarystudied.NCCmodifiedbyquaternaryammoniumsaltlostitsliquidcrystallinechiralnematicphaseseparationperformance,andbecamegell.Exceptthesurfacechargedensityincreased,basicallynochemicalandphysicalpropertiesoftheboricacidmodifiedNCCchanged.TheapplicationsofNCCandmodifiedNCCinpapermakingareexplored.PapertensilestrengthandtearstrengthareimprovedwhenaddingNCCandmodifiedNCCinthewetendinacertaindosagerange.ItisishelpfulfortheretentionofsmallcomponentsofpulpwhenNCCorcationicNCCisusedaloneorcompanywithCPAMorcationstarch.DrainingspeedcanalsobeimprovedwhencationicNCCisusedastheadditive.Keywords:nanocrystallinecellulose;surfacechargedensity;crystallinity;modification;cellulaseenzyme;retentionrate;111.5×1012t,[i]-[ii]1.1β-(1-4)-D-D-C6H10O5OCH2OHOHOHOHOOOHCH2OHOOHOOOOHOHCH2OHOHCH2OHOHOH(n-2)/2nD-1500001000010003236C6C2C3[iii]121.1[iv]C-O-C1.11.22nm20nm150GPa10GPa1.2MicrocrystallineCelluloseMCCMCC32080µmMCCMCCcellulosenanofibrils,CNFnanocrystallinecelluloseNCCNCC30100nmNCC[v]1.2NCC1.2.1NCCTerech[vi]X88×182Å2[vii]NCC[viii]NCCMCCNCCNCCSamira[ix]NCCNCC1:11:100NCCNCC1.1NCC[x]1.1NCCnmnm10015100010201005103050220522035051510030035210151.2.2NCC14NCC1.2[xi]1.2MPaGPaNCC100001503021280210380LM63307124015020%SiC59312190.2530%661869503651.2NCC1.2.3NCCNCCMCC[viii]MCCNCCNCCNCCNCCNCCNCC1.2.4NCCNCCNCCNCC[xii]NCCNCCNCCNCCNCC3%5%1.2.5NCC51.36.5%NCCAFM4×4µm22DABNCCNCCNCCNCC[xiii]Roman[xiv]NCC1.5NCC1.3NCC1.3.1NCCFavier[xv]NCC16NCCNCCNCCNCCAziziSamir[xvi]NCCNCCPEODSCTGSEMPEOPEOAziziNCCNCCNCCNCC[xvii]Araki[xviii]DMFNCCNCCNCCNCCNCCNCC[xix]1.3.2NCCNCCNCCNCCNCC4[xx]71.4NCC40µmNCCNCC1.4NCCNCCMCC1.4.1NCCNickersonHabrle1950Rånby[xxi]NCC7nmRånbyFrey-WysslingDong[xxii]NCCNCCGray[xxiii,xxiv]NCCBondesonNCCNCCNCC30%NCC18MCCDMSONaOH20MCC1.4.2NCCNorikoHayashi[xxv]NCCXTEMAFMMCCIβNCCNCCNCCMCCNCCMCCNCC80%NCCCBHMCCMCCCBHC-CC-O[xxvi]NCCNCC1.5NCCNCCNCCNCCNCCNCC9NCCNCC1.5.1.NCCNCCNCCNCCNCC[xxvii]NCC15oANCCNCCαβ[xxviii,xxix]Bondeson[xxx]NCCKim[xxxi]Rojas[xxxii]NCCZhou[xxxiii]NCCNCCNCC1.5.2NCCTEMPO2,2,6,6-Tetramethylpiperidine-1-oxylTEMPO1TEMPOTEMPONCCTEMPOTEMPONaBrNaOClDeNooyDeNooy[xxxiv]TEMPONCC110Araki[xxxv]TEMPONCCNCCTEMPONCCNCCMontanari[xxxvi]2NCCNCCNCC3NCCGousse[xxxvii]THFNCCNCCNCCNCCNCC[xxxviii]NCCNCC1.6NCC[xxxix]NCCNCCTransmissionElectronMicroscopeTEMAtomicForceMicroscopyAFMXNCC1.6.1TEMTEM0.10.2nm11TEM1.2NCC[xl]1.5NCCTEMTEMTEM1.6.2AFMAF