分子诊断技术临床应用进展

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

分子诊断技术临床应用进展张健(上海市临床检验中心,200126)摘要:分子生物学的快速发展,使分子诊断技术进入常规临床实验室的应用技术,越来越多的分子诊断实验项目应用于疾病的诊断、治疗监测和预后判定。不同的分子诊断方法具有不同的临床应用范围,本文根据分子诊断技术特征,按照杂交、扩增和测序三种技术特征,对近期分子诊断技术的发展及其在临床应用方面的进展做一综述。关键词:分子诊断荧光原位杂交聚合酶链式反应基因测序高通量狭义的分子诊断(moleculardiagnosis)是基于核酸的诊断技术,通过对DNA和/或RNA的检测来实践对疾病的检测和诊断。但是,随着第一张人类基因组测序图的完成,以及由此而带来的基因组学、蛋白组学、代谢物组学等新兴学科的发展,分子诊断的内涵已经从单纯的DNA/RNA拷贝、突变等变化的检测,拓展到核酸与DNA片段、蛋白与多肽、抗原与抗体、受体与配体等生物大分子的检测,并广泛应用于疾病的筛查、诊断、治疗监测、预后与预防等生命科学的各个领域[1]。当然,分子诊断学的快速发展,得益与分子诊断技术的日新月异。1990年启动的人类基因组计划的完成经历了十三年的时间,而2007启动的1000人基因组计划的完成却只用了3年[2],人类了解自然密码的速度正在跨上快速列车。检验医学以提供精密准确的数据服务于临床,而分子诊断技术正逐渐成为成为常规临床实验室的应用技术,这将为检验医学的发展提供巨大的机遇与挑战。本文将根据分子诊断技术特征,按照杂交、扩增和测序三种技术特征,对近期分子诊断技术的发展及其在临床应用方面的进展做一综述。一、基于分子杂交为基础的分子诊断技术发展及其应用两条同源核酸分子(DNA或RNA)可以在碱基互补的原则下形成异质双链是遗传物质最重要的化学特征,这一过程亦被称为分子杂交(molecularhybridization)。分子杂交是所有分子生物学技术的基础,从最初的印迹杂交(southernBlot和northernBlot)到实时PCR(realtimePCR),从基因芯片再到高通量的DNA测序技术,都离不开碱基互补的分子杂交反应。而且在理论上可以特异性相互作用的两个不同分子,例如核酸与核酸之间(A-G、G-C)、蛋白与蛋白之间(抗原和抗体)甚至核酸和蛋白之间(适体与多肽)的相互作用都可以视为分子杂交的不同表现模式。因此,广义的分子杂交技术是指以核酸、蛋白、糖基以及细胞、代谢物等分子的相互作用所建立的分析方法。目前临床应用的以分子杂交技术为基础的诊断技术繁多,缺乏统一的分类方法,但是可以根据实验方法的差异分为主要的两种类型,一类是通过特异性的标记探针检测检测细胞内的核酸物质,而另一类是通过探针检测从细胞内提取的核酸、蛋白等物质,前者以原位杂交及其衍生的技术为主,后者以生物芯片及其衍生的技术为主。1、原位杂交技术(insituhybridiztion,FISH)的发展与临床应用:原位杂交应用特异性的探针检测细胞内的核酸需要标记分子显示杂交信号,1960s年代的检测技术是放射性核素标记,但是信号检测程序复杂并且可能存在放射性物质的污染,而荧光物质标记可以通过显微镜直接观察实验结果,因此荧光标记的原位杂交技术(Fluorescentinsituhybridiztion,FISH)一经出现立刻取代了放射性标记的技术,成为应用最广泛的分子杂交技术。FISH技术通过荧光标记探针,可以可分子诊断技术应用进展视化的检测人类细胞或组织中特定基因的数量及其定位,是分子杂交与细胞遗传学技术的结合。IFSH技术的分析过程分为四个步骤,核酸变性、探针变性、杂交及信号检测。因此,针对探针标记、染料开发和图像分析的技术的更新是FISH分析技术发展的主要路径。首先是荧光染料的应用,从最初的单色FITC应用,发展到使用多种荧光染料的多色FISH技术(multicolor-FISH,1996)[3],既多元荧光原位杂交(Multiplex-FISH,M-FISH)[4]和光谱核型分析技术(Spectralkaryotying,SKY)[5],使用五种染料(Rhodamine,Texas-red,Cy5,FITC,andCy5.5)标记的探针可以在一次试验中定位多种不同的基因以及使用不同的颜色标记显示24条不同的染色体。其次,在探针方面,为了更精细和高分辩的显示染色体结构和基因的探针,染色体臂、着丝粒、端粒特异的探针被先后开发应用,而且应用微切割技术切割技术制备亚区域探针(microFISH),使FISH的基因定位和分辩率大大提高[6]。同时,探针标记对象和标记技术的发展不断衍生出新的FISH技术,例如比较基因组杂交(comparativegenomichybridization,CGH)、引物原位标记技术(PrimedInSituLabeling,PRINS))、肽核酸探针原位杂交(PNA-FISH)、物种交叉荧光原位杂交(Rx-FISH)、纤维原位杂交(FiberFISH)等[7]。在图像与信号分析方面,应用高分辨率CCD摄像机和计算机自动图像分析系统获得广泛应用,M-FISH分别为5种荧光染料分别成像,而SKY结合傅立叶频谱技术,同时计量可见光和近红外范围内的所有点的发射频谱而一次成像。目前FISH技术是基础科学研究得到广泛应用,但在临床诊疗中的应用主要集中在产前诊断、血液肿瘤诊断、感染性疾病诊断及实体肿瘤的诊断和药物靶向性治疗等领领域。在产前诊断方面,FISH主要用于染色体数目异常的诊断,其与常规核型分析的一致性可以达到99.5%,但结果报告时间只需要24小时,大大低于核型分析的平均2周左右的报告时间,FISH在多数的发达国家已经批准为常规产前筛查辅助诊断技术[8]。在血液肿瘤的诊断方面,FISH用于染色体异位的融合基因检测、基因缺失检测、微小残留病灶监测、骨髓移植监测等。在感染性疾病检测方面,FISH检测痰液标本中铜绿假单饱菌、流感嗜血杆菌等常见菌的敏感性可以达到90%,特异性100%[9]。对于军团菌、幽门螺旋杆菌和结核杆菌等较难培养鉴定的细菌,FISH在快速诊断上也显示了很好的应用前景[10]。在实体肿瘤的应用中,FISH可以检测任何组织类型的染色质和基因的异常,广泛应用于肺癌、乳腺癌、膀胱癌、宫颈癌等实体肿瘤的肿瘤的辅助诊断,疗效检测、个体化治疗和预后判断。特别是在肿瘤的个体化治疗方面,FISH是药物个体治疗患者筛查的主要方法之一,用于药物靶向性基因表达状态的检测。在乳腺癌治疗药物曲妥珠单抗(赫赛汀)治疗有效性患者筛选中,FISH被认为是检测HER2基因表达状态的金标准[11]。2、生物芯片技术的发展与临床应用生物芯片(Biochip)是通过微加工技术和微电子技术将大量特定序列的寡合苷酸片段、抗原/抗体,甚至细胞或组织等生物大分子,按照矩阵方式高密度的固定或直接合成在玻璃、硅片、聚丙烯、磁性微球等固项支持物上,或者整合微流体技术以及微电级、为传感器等制备的类似于电子行业的芯片样产品的检测技术。固化的探针分子与荧光标记的相应样本进行杂交,通过荧光检测系统扫描分析及计算机软件分析,达到高通量分析生物信息的目的。生物芯片技术可以根据功能的不同分为微阵列芯片(Microarraychip)、微流控芯片(Microfluidics)和芯片实验室(LAB-on-chip,LOC)[12]。早期的微阵列芯片(Microarray)单指基因芯片(genechip,DNAchip),但随着蛋白芯片(proteinchip)以及糖类芯片(glycanchip)的出现,Microarray逐渐被称为微阵列芯片,强调将大量探针有序固化在固相支持物上的检测方法,而根据探针种类的不同可以分为基因芯片、蛋白芯片及糖类芯片。微流控芯片是在几平方厘米的单晶硅片、石英、玻璃或有机聚合物等材料上刻制微通道,实现样本预处理、反应、分离和检测的微型检测平台,可快速高效、高通量的完成基因、蛋白及各种小分子分析和鉴定[13]。芯片实验室是在微流控芯片基础上发展了更为复杂的分析系统,将微机电技术于微流体技术相结合,将所需的反应均集中在一块芯片上,建立微型分析系统(Micrototalanalyticalsystem,u-TAS)[14]。目前临床实验室可以应用的微流控芯片和芯片实验室尚处于研究和开发阶段,在生物芯片中只有微阵列芯片的应用取得较大的进展,微阵列芯片的应用以DNA芯片和蛋白芯片为主。目前生物芯片可以应用的范围包括:病原体的快速检测、亚型分析及耐药性检测;肿瘤的分类、分期与筛查;遗传性疾病的诊断于筛查;自身免疫性疾病的诊断等等。国外的生物芯片开发较早,许多成熟的生物芯片的检测平台已逐渐应用于临床,例如美国Osmetch公司的e-SensorCFtest(检测Cysticfibrosis)和Roche/Affymetrix的CYP450芯片(检测药物代谢相关基因CYP2D6和CYP2C19),Agendia公司的Mammaprint芯片(检测乳腺癌相关基因),这三种芯片均已获得美国FDA的批准应用于临床实验室[15]。国内的生物芯片检测平台的起步较晚,目前有少数产品获得sFDA批准。获得sFDA批准的生物芯片产品及其制造商见表1。表一国产生物芯片检测试剂及其制造商制造商名称生物芯片名称技术分类批准年限上海浩源生物科技有限公司HIV(I型)核酸检测DNA芯片2008珠海赛乐奇生物技术有限公司HBV耐药基因点突变DNA芯片2011HBV基因分型检测DNA芯片2011湖州树康生物技术有限公司ENA抗体(6种)定性蛋白芯片2011多肿瘤标志物检测蛋白芯片2009上海百傲科技有限公司CYP2C19基因检测DNA芯片2009ALDH2(GLu504Lys)检测DNA芯片2010港龙生物技术(深圳)有限公司HVP基因分型DNA芯片2011上海裕隆生物技术有限公司多肿瘤标志物检测(男)蛋白芯片2010多肿瘤标志物检测(女)蛋白芯片2010博奥生物有限公司抗核抗体(8项)DNA芯片2010遗传性耳聋基因检测DNA芯片2010分枝杆菌鉴定DNA芯片2010资料来源于国家食品药品监督局官方网站二、基于扩增技术为基础的分子诊断技术的发展及其应用1983年Mullis发明了聚合酶链式反应(Polymerasechainreaction,PCR),使体外扩增DNA成为可能,开启了体外扩增和操作DNA或RAN技术的发展。在之后的20多年里,扩增DNA的技术成为分子分子诊断技术应用进展诊断应用最广的技术之一,发展变化了数十种核酸扩增检测技术。目前缺乏统一的核酸扩增技术的分类,但根据DNA被扩增的过程中是变温还是恒温方式,可以将核酸扩增技术分为两类,一类是温度循环式的扩增技术,以常规(conventionalPCR)和实时PCR(realtimePCR,RT-PCR)为主,另一类技术是等温方式的扩增技术,以转录介导的扩增(Transcription-mediatedamplification,TMA),环介导等温扩增(Loop-mediatedisothermalamplification,LAMP)等技术为主。1.温度循环式核酸扩增技术:PCR技术的反应过程是在引物的介导下,通过DNA聚合酶在变形、退火、延伸3个不同温度条件下的多次循环来扩增引物特异的目的DNA序列,因此PCR技术的发展主要以引物的设计、产物分析或信号检测为主。对于扩增产物的检测方式的差异,衍生出两类主要PCR的测定技术,一种是终点检测法,通常称为常规PCR,一种是动态监测法,通常称为实时PCR(realtimePCR,RT-PCR)[16]。常规PCR在扩增反应结束后对产物进行电泳或杂交等方式的分析,因此与其他技术的结合衍生出多种分析方法,例如PCR结合限制性长度多态性分析(PCR-RFLP)、PCR结合特异性寡合苷酸探针斑点杂交(PCR-ASO)、PCR结合变性梯度凝胶(PCR-DGGE)、PCR结合的单链构象多态性(PCR-SSCP)等分析技术[17]。由于PCR扩增过程的终末反应是进入平台期,因此检测样本中的不

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功