DSP技术应用现状以及发展趋势

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

DSP技术应用现状和发展趋势一、数字信号处理结构。实时数字信号处理系统:采集系统+DSP芯片非实时系统:pc机上进行处理系统的模拟与仿真或仿真库+DSP芯片。1DSP、MCU、MPU的关系微控制器MCU通俗的称呼是单片机,它与微处理器MPU是微机技术的两大分支。MPU的发展动力是人类对无止境的海量数值运算的需求,速度越来越快。MCU的发展是为了满足被控制对象的要求,向高可靠性、低功耗、低成本发展。一般MCU的引脚数在60以下,MCU以8位机为主、32位机为辅。有趋势提高MCU的运算功能,将DSP集成到MCU中,比如32位的MC68356集成了Motorola的DSP56002。微控制器MCU一直存在两种基本结构:哈佛(Harvard)结构和冯诺依曼(vonMeumann)结构,还可进一步讲是对应成复杂指令集计算机CISC和精简指令计算机RISC。冯诺伊曼结构具有单一总线PRAM或DRAM都映射到同一地址空间,总线宽度与CPU类型匹配。哈佛结构具有独立的程序总线和数据总线,CISC的指令一般是微码miccode,每条指令由CPU解码为许多基本指令,基于CISC的微控制器一般很复杂,都采用冯诺伊曼结构,所需要的程序存储器比RISC产品少。微码在CPU产生而限制了CISC器件的带宽,其指令集也比RISC器件大。68000的MPU是准32位的MPU,内部32位,外部总线是16位。苹果机就是用68000系列,它的运行分成系统态和用户态,其设计是面向分时多任务或实时操作系统的,68000的总线后来变成VME总线标准。到68020就是全32位了。1991年IEEE1149.1即JTAG的公布满足了IC制造商的措施需求,也给ASIC、MCU、MPU、DSP、PLD、FPGA等的用户带来方便。一般十万门以上的IC都有JTAG接口,1993年IEEE1149.5对JTAG作了修正(5线接口)。IC的测试分成晶片级、IC封装级、电路板与系统极,JTAG完成了前两者的测试。适于68000系列的32位机的开发工具ICD32是一段扁平电缆,一端接IC的JTAG的5线接口,一端通过25芯头(里面有GAL)接PC机并口。传统上,微控制器MCU与微处理器MPU是两大分支,而DSP是MCU的一种特殊变形。但是从实质讲,MPU多半是CISC,除了DSP之外的MCU也是CISC。而DSP是RISC。所以比较时更适合DSP与MPU相比,MPU适宜于相同管理这样的应用中,以条件判断为主的应用,以软件管理的操作系统为核心的产品,MPU的设计侧重于不妨碍程序的流程,以保证操作系统支持功能及转移预测功能等。而DSP侧重于保证数据的顺利通行,结构尽量简单。2冯·诺依曼结构和哈佛结构1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯.诺曼型结构”计算机。冯.诺曼结构的处理器使用同一个存储器,经由同一个总线传输。冯.诺曼结构处理器具有以下几个特点:必须有一个存储器;必须有一个控制器;必须有一个运算器,用于完成算术运算和逻辑运算;必须有输入和输出设备,用于进行人机通信。另外,程序和数据统一存储并在程序控制下自动工作冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码和执行指令。从指令流的定时关系也可看出冯·诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯.诺曼结构处理器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码後得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度。哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。目前使用哈佛结构的中央处理器和微控制器有很多,除了上面提到的Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和安谋公司的ARM9、ARM10和ARM11。哈佛结构是指程序和数据空间独立的体系结构,目的是为了减轻程序运行时的访存瓶颈.例如最常见的卷积运算中,一条指令同时取两个操作数,在流水线处理时,同时还有一个取指操作,如果程序和数据通过一条总线访问,取指和取数必会产生冲突,而这对大运算量的循环的执行效率是很不利的.哈佛结构能基本上解决取指和取数的冲突问题.而对另一个操作数的访问,就只能采用Enhanced哈佛结构了,例如像TI那样,数据区再split,并多一组总线.或向AD那样,采用指令cache,指令区可存放一部分二、DSP应用方向,其他cpu和控制器融合趋势、发展方向DSP技术在各领域的创新应用2.1通信领域的应用近年来,随着通信技术的飞速发展,DSP已经成为信号与信息处理领域里一门十分重要的新兴学科,它代表着当今无线系统的主流发展方向。现在,通信领域中许多产品都与DSP密切联系,例如,Modem、数据加密、扩频通信、可视电话等。而寻找DSP芯片来实现算法最开始的目标是在可以接受的时间内对算法做仿真,随后是将波形存储起来,然后再加以处理。图1所示,给出了一个典型的DSP应用系统。数字蜂窝电话是DSP最为重要的应用领域。因DSP具有强大的计算能力,使得移动通信的蜂窝电话重新崛起,并创造了一批诸如GSM、CDMA等全数字蜂窝电话网[3]。由于采用DSP技术,蜂窝电话的更新换代变得更为容易,只需在统一的硬件平台基础上,通过软件的不断升级生产各式各样的新款手机。图1系统方框图输入信号首先进行带限滤波和抽样,然后进行模/数转换,将模拟信号转换成数字比特流。根据香农抽样定理,为保持信息的不丢失,抽样频率至少必须是输入带限信号最高频率的两倍。2.2仪器仪表领域的应用DSP已经涉足测量仪表和测试仪器行业,而且大有取代高档单片机的趋势。使用DSP开发测量仪表和测试仪器可将产品提升到一个崭新的水平。新款DSP丰富的片内资源可以大大简化仪器仪表的硬件电路,实现仪器仪表的SOC(SystemOnChip,即片上系统)设计。仪器仪表的测量精度和速度是一项重要的指标,使用DSP芯片开发产品可使这两项指标大大提高。以TMS320F2810为例,其高效的32位CPU内核、优异的12位A/D转换器、丰富的片内存储器以及灵活的指令系统为我们开发快速、高精度仪器搭建了广阔的平台。目前DSP正处于一个高速发展的时期,仪器仪表是DSP的一个重要应用领域,相信DSP的应用会推进仪器仪表的技术革新。2.3PC领域中的应用可编程多媒体DSP是PC领域的主流产品。以XDSLModem为代表的高速通信技术与MPEG图像技术相结合,使得高品位的音频和视频形式的计算机数据有可能实现实时交换。预计在今后的PC机中,一个DSP即可完成全部所需的多媒体的处理功能。2.4全新数码助听器中的应用由于传统助听器线路功能的局限性,无法满足大部分听障患者的要求,这个使命理所当然的留给了全数码助听器。在国外,助听器的技术正由传统的电子放大电路逐步被DSP所取代。DSP具有强大的处理功能,能让听障患者听到更清晰的、想要听到的声音,去除患者不想听到的声音,从而使现代的助听器技术产生一个质的飞跃。数字信号处理是全数码助听器的核心部分。它为调整输入/输出特性和系统的频率响应特性提供很强的灵活性。2.5图形图像技术领域的应用DVD里应用的活动图像压缩/解压缩用MPEG2编码/译码器,同时也广泛地应用于视频点播VOD、高品位有线电视和卫星广播等诸多领域。在这些领域里,应用的DSP应该具备更高的处理速度和功能。而且,活动图像压缩/解压技术也日新月异,例如,DCT变换域编码很难提高压缩比与重构图像质量,于是出现了对以视觉感知特性为指导的小波分析图像压缩方法。新的算法出现,要求相应的高性能DSP。最近,日本各大学和高技术企业对于开发虚拟现实VR系统,投入相当力量,利用现代计算机图像学CG生成3维图形,迫切需要多个DSP并行处理系统。其中,系统里的结点DSP单元,要求采用与并行处理相适应的体系结构。2.6汽车电子系统及其他应用领域汽车电子系统日益兴旺发达起来,诸如装设红外线和毫米波雷达,将需用DSP进行分析。如今,汽车愈来愈多,防冲撞系统已成为研究热点。而且,利用摄像机拍摄的图像数据需要经过DSP处理,才能在驾驶系统里显示出来,供驾驶人员参考。应用DSP的领域可以说是不胜枚举,电视会议系统里,也大量应用DSP器件。视听机器里也都应用DSP。随着科学技术的发展,将会出现许许多多的DSP新应用领域。3DSP技术的发展前景目前,DSP市场正处于高速成长阶段,在数字化、个人化和网络化的推动下,2009年世界DSP市场营业额已超过800亿美元,预计未来的年增长率高达40%,在全球DSP市场中,仅就美国而言,据估计,美国有超过1亿辆汽车、几千万台个人通信装置、每个家庭中就有5~20个联网的家用电器以及数以百万计的工厂使用DSP系统。中国已成为DSP芯片的最大市场,数码相机、IP电话和手持电子设备的热销带来了对DSP芯片的巨大需求。尽管DSP市场日趋成熟,但仍有成长空间。互联网和设备个性化是当前信息社会的特征。互联网是PC时代全球经济新的增长点,由于PC市场仍未饱和,市场潜力巨大,也是DSP潜在的应用领域。而手机、PDA、MP3播放器以及手提电脑等则是设备个性化的典型代表,这些设备的发展水平取决于DSP的发展。新的形势下,DSP面临的要求是处理速度更高,功能更多更全,功耗更低,存储器用量更少。DSP的技术发展将会有以下一些走势:(1)系统级集成DSP是潮流。小DSP芯片尺寸始终是DSP的技术发展方向。当前的DSP尺寸小、功耗低、性能高。各DSP厂商纷纷采用新工艺,改进DSP芯核,并将几个DSP芯核、MPU芯核、专用处理单元、外围电路单元、存储单元统统集成在一个芯片上,成为DSP系统级集成电路。(2)追求更高的运算速度和进一步降低功耗和几何尺寸[4]。由于电子设备的个人化和客户化趋势,DSP必须追求更高更快的运算速度,才能跟上电子设备的更新步伐。同时由于DSP的应用范围已扩大到人们工作生活的各个领域,特别是便携式手持产品对于低功耗和尺寸的要求很高,所以DSP有待于进一步降低功耗。按照CMOS的发展趋势,依靠新工艺改进芯片结构,DSP运算速度的提高和功耗尺寸的降低是完全可能的。(3)DSP的内核结构进一步改善[5]。DSP的结构主要是针对应用,并根据应用优化DSP设计以极大改进产品的性能。多通道结构和单指令多重数据(SIMD)、超长指令字结构(VLIM)、超标量结构、超流水结构、多处理、多线程及可并行扩展的超级哈佛结构(SHARC)在新的高性能处理器中将占据主导地位。(4)DSP嵌入式系统[5]。DSP嵌入式系统是DSP系统嵌入到应用电子系统中的一种通用系统[4。这种系统既具有DSP器件在数据处理方面的优势,又具有应用目标所需要的技术特征。在许多嵌入式应用领域,既需要在数据处理方面具有独特优势的DSP,也需要在智能控制方面技高一筹的微处理器(MCU)。因此,将DSP与MCU融合在一起的双核平台,将成为DSP技术发展的一种新潮流。cpu和控制器融合趋势多年以来,尽管PC在不断发展,但基本架构始终未变。中央处理器被连接到芯片组上,而芯片组上又包含了内存控制器和I/O控制器。随着制造工艺的提升

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功