1七年级数学上册知识点汇总1.有理数:(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数(3)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0(a是非负数);a≤0a是负数或0(a是非正数).(4)最大的负整数是-1,最小的正整数是12.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;如1.5的相反数是-1.5,-12的相反数是12,a的相反数是-a,0的相反数还是0;(2)注意:3.14-的相反数是-3.14;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0,即:a+b=0a、b互为相反数.(4)相反数的商为-1(除0外).(5)相反数的绝对值相等。4.绝对值:(1)正数的绝对值等于它本身,例如:|5|=5,|-3.14|=-3.140的绝对值是0,负数的绝对值等于它的相反数;例如:|-5|=5,|3.14-|=-(3.14-)注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:)0a(a)0a(0)0a(aa或)0()0(aaaaa;(3)0a1aa;0a1aa;(4)|a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;6.倒数:乘积为1的两个数互为倒数;例如:1.2的倒数是5/6,-4/7的倒数是-7/4注意:0没有倒数;若ab=1a、b互为倒数;等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.7.有理数加法法则:2(1)同号两数相加,取相同的符号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为+号省略读作-2,-1的和,也可读作-2减1)(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1,-2+1=-1,7-9=-2(7-9读为7与-9的和)(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5.10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零因数连乘,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。4×(-6)×(-8)×12×(-9)=-4×6×8×12×911有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.(简便运算)12.有理数除法法则:(1)除以一个数等于乘以这个数的倒数;例如:7÷(-4/5)=7×(-5/4)(2)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非零数都得0。(注意:零不能做除数,)13.有理数的乘方:(1)求n个相同因数a的积的运算,叫做乘方;即an=a.a.....a(2)乘方中,相同的因数a叫做底数,相同因数的个数n叫做指数,乘方的结果叫做幂;(3)|a|,a2是非负数,即|a|,a2≥0;若(a-2)2+|b+4|=0a-2=0,b+4=0(即a=2,b=-4);(4)正数的任何次幂都是正数;例如:1n=1(5)负数的奇次幂是负数;例如:(-1)2n+1=-1负数的偶次幂是正数;(-1)2n=1(6)(-3)2与-32的区别:(-3)2=(-3)×(-3)=9;-32=-3×3.=-914.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.15.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位例如:23.4精确到0.1或精确到十分位,5.78×104(5.78万)精确到百位。16.有效数字:从左边第一个不为零的数字起,到末位数字止,所有数字,都叫这个近似数的有效数字.例如:0.0403有三个有效数字:4,0,3.17.混合运算法则:先乘方,再乘除,后加减;如果有括号,先算括号,同一级运算,从左到右进行.注意:不省过程,不跳步骤。18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。整式的加减19.单项式:表示数与字母的乘积的式子,单独的一个数或字母也叫单项式。例如:单项式:3xy,a,-3ab/2,0,-7,不是单项式:a/c,(m+n)/2,ab+ac320.单项式的系数与次数:单项式中的数字因数,称单项式的系数;例如:-32xy,a,-3ab/2,a2b的系数分别是-32,1,-3/2,单项式中所有字母指数的和,叫单项式的次数.例如:-32xy,a,a2b的次数分别是2,1,321.多项式:几个单项式的和叫多项式.22.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;例如:-x2y+5xy-2x-1是三次四项式,其中,三次项是-x2y,三次项系数是-1,二次项是5xy,二次项系数是5,一次项是-2x,一次项系数是-2,常数项是-123.单项式与多项式统称整式.24.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.25.合并同类项法则:系数相加,字母与字母的指数不变.不是同类项不能合并。26.去(添)括号法则:把括号和括号前面的符号去掉若括号前边是“+”号,括号里的各项都不变号;+(a-b+c)=a-b+c若括号前边是“-”号,括号里的各项都要变号.-(a-b+c)=-a+b-c27.整式的加减:一找(同类项):(划线);二加(系数相加)三合(字母部分不变)28.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).经典例题透析类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m千克售价____________元。(2)温度由5℃上升t℃后是__________℃。(3)每台电脑售价x元,降价10%后每台售价为____________元。(4)某人完成一项工程需要a天,此人的工作效率为__________。思路点拨:用字母表示数量关系,关键是理解题意,抓住关键词句,再用适当的式子表达出来。举一反三:[变式]某校学生给“希望小学”邮寄每册元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。类型二:整式的概念2.指出下列各式中哪些是整式,哪些不是。(1)x+1;(2)a=2;(3)π;(4)S=πR2;(5);(6)总结升华:判断是不是整式,关键是了解整式的概念,注意整式与等式、不等式的区别,等4式含有等号,不等式含有不等号,而整式不能含有这些符号。举一反三:[变式]把下列式子按单项式、多项式、整式进行归类。x2y,a-b,x+y2-5,,-29,2ax+9b-5,600xz,axy,xyz-1,。分析:本题的实质就是识别单项式、多项式和整式。单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式。答案:单项式有:x2y,-,-29,600xz,axy多项式有:a-b,x+y2-5,2ax+9b-5,xyz-1整式有:x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。类型三:同类项3.若与是同类项,那么a,b的值分别是()(A)a=2,b=-1。(B)a=2,b=1。(C)a=-2,b=-1。(D)a=-2,b=1。思路点拨:解决此类问题的关键是明确同类项定义,即字母相同且相同字母的指数相同,要注意同类项与系数的大小没有关系。解析:由同类项的定义可得:a-1=-b,且2a+b=3,解得a=2,b=-1,故选A。举一反三:[变式]在下面的语句中,正确的有()①-a2b3与a3b2是同类项;②x2yz与-zx2y是同类项;③-1与是同类项;④字母相同的项是同类项。A、1个B、2个C、3个D、4个解析:①中-a2b3与a3b2所含的字母都是a,b,但a的次数分别是2,3,b的次数分别5是3,2,所以它们不是同类项;②中所含字母相同,并且相同字母的指数也相同,所以x2yz与-zx2y是同类项;不含字母的项(常数项)都是同类项,③正确,根据①可知④不正确。故选B。类型四:整式的加减4.化简m-n-(m+n)的结果是()(A)0。(B)2m。(C)-2n。(D)2m-2n。思路点拨:按去括号的法则进行计算,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。解析:原式=m-n-m-n=-2n,故选(C)。举一反三:[变式]计算:2xy+3xy=_________。分析:按合并同类项的法则进行计算,把系数相加所得的结果作为系数,字母和字母的指数不变。注意不要出现5x2y2的错误。答案:5xy。5.(化简代入求值法)已知x=-,y=-,求代数式(5x2y-2xy2-3xy)-(2xy+5x2y-2xy2)思路点拨:此题直接把x、y的值代入比较麻烦,应先化简再代入求值。解析:原式=5x2y-2xy2-3xy-2xy-5x2y+2xy2=-5xy当x=-,y=-时,原式=-5×。总结升华:求代数式的值的第一步是“代入”,即用数值替代整式里的字母;第二步是“求值”,即按照整式中指明的运算,计算出结果。应注意的问题是:当整式中有同类项时,应先合并同类项化简原式,再代入求值。举一反三:[变式1]当x=0,x=,x=-2时,分别求代数式的2x2-x+1的值。解:当x=0时,2x2-x+1=2×02-0+1=1;当x=时,2x2-x+1=2×;当x=-2时,2x2-x+1=2×(-2)2-(-2)+1=2×4+2+1=11。总结升华:一个整式的值,是由整式中的字母所取的值确定的,字母取值不同,一般整式的值也不同;当整式中没有同类项时,直接代入计算,原式中的系数、指数及运算符号都不改变。但应注意,当字母的取值是分数或负数时,代入时,应将分数或负数添上括号。6[变式2]先化简,再求值。3(2x2y-3xy2)-(xy2-3x2y),其中x=,y=-1。解:3(2x2y-3xy2)-(xy2-3x2y)=(6x2y-9xy2)-xy2+3x2y=6x2y-9xy2-xy2+3x2y=9x2y-10xy2。∴当x=,y=-1时,原式=9××(-1)-10××(-1)2=-。总结升华:解题的基本规律是先把原式化简为9x2y-10xy2,再代入求值,化简降低了运算难度,使计算更加简便,体现了化繁为简,化难为易的转化思想。[变式3]求下列各式的值。(1)(2x2-x-1)-,其中x=(2)2[mn+(-3m)]-3(2n-mn),其中m+n=2,mn=-3。解析:(1)(2x2-x-1)-=2x2-x-1-x2+x++3x2-3=4x2-4当x=时,原式=4×-4=9-4=5。(2)2[mn+(-3m)]-3(2n-mn)=2mn-6m-6n+3mn=5mn-6(m+n)当m+n=2,mn=-3时原式=5×(-3)-6×2=-27。类型五:整体思想的应用6.已知x2+x+3的值为7,求2x2+2x-3的值。思路点