2014年全国统一考试新课标II卷理科数学试卷及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

绝密★启用前2014年普通高等学校招生全国统一考试数学理科数学(新课标卷Ⅱ)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N=2|320xxx≤,则MN=()A.{1}B.{2}C.{0,1}D.{1,2}2.设复数1z,2z在复平面内的对应点关于虚轴对称,12zi,则12zz()A.-5B.5C.-4+iD.-4-i3.设向量a,b满足|a+b|=10,|a-b|=6,则ab=()A.1B.2C.3D.54.钝角三角形ABC的面积是12,AB=1,BC=2,则AC=()A.5B.5C.2D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.137.执行右图程序框图,如果输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A.0B.1C.2D.39.设x,y满足约束条件70310350xyxyxy≤≤≥,则2zxy的最大值为()A.10B.8C.3D.210.设F为抛物线C:23yx的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.334B.938C.6332D.9411.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.110B.25C.3010D.2212.设函数3sinxfxm.若存在fx的极值点0x满足22200xfxm,则m的取值范围是()A.,66,B.,44,C.,22,D.,14,第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.10xa的展开式中,7x的系数为15,则a=________.(用数字填写答案)14.函数sin22sincosfxxx的最大值为_________.15.已知偶函数fx在0,单调递减,20f.若10fx,则x的取值范围是__________.16.设点M(0x,1),若在圆O:221xy上存在点N,使得zxxk∠OMN=45°,则0x的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列na满足1a=1,131nnaa.(Ⅰ)证明12na是等比数列,并求na的通项公式;(Ⅱ)证明:1231112naaa…+.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:121niiiniittyybtt,ˆˆaybt20.(本小题满分12分)设1F,2F分别是椭圆C:222210yxabab的左,右焦点,M是C上一点且2MF与x轴垂直,直线1MF与C的另一个交点为N.(Ⅰ)若直线MN的斜率为34,求C的离心率;(Ⅱ)若直线MN在y轴上的截距为2,且15MNFN,求a,b.21.(本小题满分12分)已知函数fx=2xxeexzxxk(Ⅰ)讨论fx的单调性;(Ⅱ)设24gxfxbfx,当0x时,0gx,求b的最大值;(Ⅲ)已知1.414221.4143,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,有途高考网同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)ADDE=22PB23.(本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos,0,2.zxxk(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线:32lyx垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.24.(本小题满分10)选修4-5:不等式选讲设函数fx=1(0)xxaaa(Ⅰ)证明:fx≥2;(Ⅱ)若35f,求a的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题(1)D(2)A(3)A(4)B(5)A(6)C(7)D(8)D(9)B(10)D(11)C(12)C二、填空题(13)12(14)1(15)(-1,3)(16)[-1,1]三、解答题(17)解:(1)由131mmaa得1113().22mmaa又113a22,所以,{12ma}是首项为32,公比为3的等比数列。12ma=32m,因此{na}的通项公式为ma=312m(2)由(1)知1ma=231m因为当n1时,31m123,m所以,1113123mm于是,11211111133mmaaa=313(1)232m所以,1211132maaa(18)解:(1)连结BD交AC于点O,连结EO因为ABCD为矩形,所以O为BD的中点又E为的PD的中点,所以EOPBEO平面AEC,PB平面AEC,所以PB平面AEC(2)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,AB的方向为x轴的正方向,AP为单位长,建立空间直角坐标系,则A—xyz,则D(0,3,0),则E(0,32,12),AE=(0,32,12)设B(m,0,0)(m>0),则C(m,3,0)设n(x,y,z)为平面ACE的法向量,则{1100nACnAE即{0102323mxyyz可取1n=(3m,-1,3)又1n=(1,0,0)为平面DAE的法向量,由题设12cos(,)nn=12,即2334m=12,解得m=32因为E为PD的中点,所以三棱锥E-ACD的高为12,三棱锥E-ACD的体积为V=131233212=3819解:(1)由所得数据计算得t=17(1+2+3+4+5+6+7)=4,y=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.37211()itt=9+4+1+0+1+4+9=287111()()ittyy=(-3)(-1.4)+(-2)(-1)+(-1)(-0.7)+00.1+10.5+20.9+31.6=14,b=71117211()()()iittyytt=1428=0.5a=y-bt=4.3-0.54=2.3所求回归方程为y=0.5t+2.3(Ⅱ)由(Ⅰ)知,b=0.50,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(1)中的回归方程,得y=0.5×9+2.3=6.8故预测该地区2015年农村居民家庭人均纯收入为6.8千元(20)解:(Ⅰ)根据c=以及题设知M(c,),2=3ac将=-代入2=3ac,解得=,=-2(舍去)故C的离心率为(Ⅱ)由题意,原点O的的中点,M∥y轴,所以直线M与y轴的交点D是线段M的中点,故=4,即①由=得=设N(x,y),由题意可知y0,则即代入方程C,得+=1②将①以及c=代入②得到+=1解得a=7,a=7,(21)解(Ⅰ)+-2≥0,等号仅当x=0时成立,所以f(x)在(—∞,+∞)单调递增(Ⅱ)g(x)=f(2x)-4bf(x)=--4b(-)+(8b-4)x(x)=2[++]=2(+)(+)(1)当b2时,g’(x)0,等号仅当x=0时成立,所以g(x)在(-,+)单调递增,而g(0)=0,所以对任意x0,g(x)0;(2)当b2时,若x满足,2xxee2b-2即0xln(b-1+22bb)时g’(x)0,而g(0)=0,因此当0Xln(b-1+22bb)时,g(x)0综上,b的最大值为2(3)由(2)知,g(ln2)=32-22b+2(2b-1)ln2当b=2时,g(ln2)=32-42+6ln20,ln2823120.6928当b=324+1时,ln(b-1+22bb)=ln2g(ln2)=32-22+(32+2)ln20in2182280.693(22)解:(1)连结AB,AC由题设知PA=PD,故PAD=PDA因为PDA=DAC+DCAPAD=BAD+PABDCA=PAB所以DAC=BAD,因此=(2)由切割线定理得2PA=PB*PC因为PA=PD=DC,所以DC=2PB,BD=PB由相交弦定理得AD*DE=BD*DC所以,AD*DE=22PB(23)解:(1)C的普通方程为+=1(0)可得C的参数方程(t为参数,0(Ⅱ)设D(1+cost,sint).由(Ⅰ)知C是以G(1,0)为圆心,1为半径的上半圆。因为C在点D处的切线与I垂直,所以直线GD与I的斜率相同。tant=,t=π/3.故D的直角坐标为(1+cosπ/3,sinπ/3),即(3/2,/2).(24)解:(Ⅰ)由a0,有f(x)=|x+1/a|+|x-a|≥|x+1/a-(x-a)|=1/a+a≥2.所以f(x)≥2.(Ⅱ)f(x)=|3+1/a|+|3-a|.当a>3时,f(3)=a+1/a,由f(3)<5得3<a<当0a≤3时,f(3)=6-a+,f(3)5得a≤3综上所诉,a的取值范围为()

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功