一次函数与反比例函数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第四讲:一次函数与反比例函数(姓名:)一.解答题(共4小题)1.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.2.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.23.如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.32017年03月25日马勇的初中数学组卷参考答案与试题解析一.解答题(共4小题)1.(2016•西宁)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【分析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.【点评】本题考查了反比例函数和一次函数的交点问题,掌握用待定系数法求一次函数和反比例函数是解题的关键.42.(2017•禹州市一模)如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.【分析】(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数y=,即可得出k,两个函数解析式联立求得点B坐标;(2)作点B作关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD的值最小,然后根据勾股定理即可求得.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=,得k=3,∴反比例函数的表达式y=,两个函数解析式联立列方程组得,解得x1=1,x2=3,∴点B坐标(3,1);(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD的值最小,∴D(3,﹣1),5∵A(1,3),∴AD==2,∴PA+PB的最小值为2.【点评】本题考查了一次函数和反比例函数相交的有关问题;轴对称﹣最短路线问题;解题关键在于点的坐标的灵活运用.3.(2017•河北区模拟)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),6设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2016•绵阳)如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.【分析】(1)分别令x=0、y=0,求得对应y和x的值,从而的得到点A、B的坐标,然后依据三角形的面积公式可求得k1的值,然后由直线的解析式可求得点C的坐标,由点C的坐标可求得反比例函数的解析式;(2)由函数的对称性可求得D(6,1),从而可求得x的值范围,然后求得当x=2、3、4、5时,一次函数和反比例函数对应的函数值,从而可得到整点的坐标.【解答】解:(1)∵当x=0时,y=7,当y=0时,x=﹣,∴A(﹣,0)、B(0、7).∴S△AOB=|OA|•|OB|=×(﹣)×7=,解得k1=﹣1.∴直线的解析式为y=﹣x+7.∵当x=1时,y=﹣1+7=6,∴C(1,6).7∴k2=1×6=6.∴反比例函数的解析式为y=.(2)∵点C与点D关于y=x对称,∴D(6,1).当x=2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点为(2,4);当x=3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点为(3,3);当x=4时,反比例函数图象上的点为(4,),直线上的点为(4,3),此时可得整点为(4,2);当x=5时,反比例函数图象上的点为(5,),直线上的点为(5,2),此时,不存在整点.综上所述,符合条件的整点有(2,4)、(3,3)、(4,2).【点评】本题主要考查的是反比例函数与一次函数的交点问题,依据三角形的面积求得k1的值是解题的关键.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功