上海交通大学硕士学位论文加湿湍流扩散燃烧特性的实验与数值研究姓名:郁炜申请学位级别:硕士专业:动力机械及工程指导教师:臧述升2003.1.1IHAT/DantePIV/PIVPIVPIVIICFDFLUENT0510/H2OOOHOOHNOXOOHNOXPIVIIIEXPERIMENTALANDNUMERICALRESEARCHONTHEPERFORMANCEOFHUMIDAIRTURBULENTDIFFUSIONCOMBUSTIONABSTRACTInordertoimprovetheefficiencyofenergyutilizationandadapttotheincreasinglystrictrestrictionsontherequirementsofenvironmentprotection,ithasbeenmoreandmoreimportanttodevelopclearandefficientmethodsforenergyutilization.Atpresent,someadvancedthermalcyclessuchasHumidAirTurbinecyclehavebeenresearchfocus.Thehumidaircombustionprocessinthesecyclesaddcomplexitytotheregularcombustionprocess,soitisimportanttoinvestigatethethermodynamicsandcombustionkineticsmechanismofthiscombustionprocess.Anexperimentalandnumericalstudyhasbeenperformedinthisthesistoinvestigatethehumidairturbulentdiffusioncombustion.Thetechniquesforcombustionexperimentationhasbeenimprovedandtheapplicationoflaserdiagnosticsoncombustionmeasurementisapivotalprogressoftheinthisarea.A2-DDantec’sPIVsystemwasusedtomeasurethecombustionflowfieldofmethane/airdiffusionflameandreasonableresultshavebeenobtained.ThisthesishassolvedsomedifficultiesofthePIVapplicationincombustiondiagnosticssuchastheselectionofseeding,removalofbackgroundnoiseandthesetupofPIVsystem.Thisresearchwillbehelpfulforfutureresearchonthelaserdiagnosticsofhumidaircombustion.AnexperimentalfacilityhasbeendesignedandsetupinthisthesisIVtoinvestigatethemechanismofhumidaircombustion.Duringthedesignprocess,theauthorplacedhighpremiumsonthefollowingtwoaspects.First,researchonthemechanismofhumidaircombustioncanbecarriedoutwiththisfacility.Secondly,itwillbeconvenientfortheapplicationofadvancedlaserdiagnosticsduringtheexperimentalresearchofcombustionflowfieldandnon-reactiveflowfield.Differentmodelingmethodsforturbulentcombustionhavebeenstudiedinthispaperinordertoselectadvisablemodelforthenumericalsimulation.Usingthedataofthedesignedexperimentalfacility,methane/airturbulentdiffusionflameshavebeensimulatedwiththecommercialCFDsoftwarepackagesFLUENTunderthreedifferenthumidity(themoisturelevelis0%,5%and10%respectively).Duringtheprocessofthenumericalsimulation,partial-equilibriummodelandflameletmodelwerecomparedwitheachother.Thetemperaturefield,velocityfield,H2O,OandOHconcentrationswascomparedunderdifferentmoistureleverofinletair.HighermoisturelevelwilllowerthehighesttemperatureandtheOmassfractionwilldecreasewhiletheOHmassfractionwillincrease.TheauthoralsointroducedtheformationmechanismofNOXandtheinfluenceofOandOHelementsoncombustionandtheformationofNOX.KeyWords:humidaircombustion,laserdiagnostics,turbulentdiffusioncombustion,chemicalreaction,numericalsimulationVaTrAiwipcXvcldbDterHLekRelGrmPr’-ioxfpr11.1HATHAT21,,,.UTRC-DOE-FETC[1]HAT1.221.2.1FlowVisualizationFlowMeasurement1883Reynolds1888Mach20Prandtl1912V.KarmanKarman70[2]7080LDALDVPDALIFPIVCARSlPIVLIFY.Kurosawa[3]PIV3PIV451-1O2NOXNOXNOXFigure1-1CombustionexperimentinJapan’sNationalAerospaceLaboratoryNationalInstituteofStandardsandTechnologyPIV[4][5]1-21.54Figure1-2ExperimentalfacilityofNISTHedmanP.O.LDACARS[6]PLIFPlanarLaserInducedFluorescenceDigitalImagesfromStillFilmPhotographsOH[7]ENSMATheFrenchNationalSchoolofMechanicsandAeroTechnologyPIVDantecPIVA300T,1-3PIV5Figure1-3MicrorgravitycombustionexperimentofENSMAPIVPDALIFlPIVDantecPIV/PIV[8]PDA0.69[9]LDA[10]9132LDA[11]1.2.26NOxUTRC-DOE-FETCHAT0%,5%,10%15%200psiNOxNOx1-415%H2ONOxppmF15%H2ONOxppmFigure1-4ResearchresultsbyUTRCandDOE-FETC1.2.37VonKarman[12]BMLEBUEBUPDF8ESCIMO[13]1.31.3.1PIVPIVHATHAT9731.3.2lPIVPIVPIVl6NOxUTRC-DOE-FETCHAT0%,5%,10%15%200psiNOxNOx1-415%H2ONOxppmF15%H2ONOxppmFigure1-4ResearchresultsbyUTRCandDOE-FETC1.2.37VonKarman[12]BMLEBUEBUPDF6NOxUTRC-DOE-FETCHAT0%,5%,10%15%200psiNOxNOx1-415%H2ONOxppmF15%H2ONOxppmFigure1-4ResearchresultsbyUTRCandDOE-FETC1.2.37VonKarman[12]BMLEBUEBUPDF[13]1.31.3.1PIVPIVHATHAT9731.3.2lPIVPIVPIVl9(1)2lCFDFLUENTPDFbRNGek-SIMPLElOHONOX102.1PIVPIV(ParticleImageVelocimetry)LDALaserDopplerAnemometryPIVPIVPIVPIVCCD21Figure2-1ComponentsofPIVSystemPIVtΔ11tΔtΔCCDCharge-CoupledDeviceCCDCCDAuto-Correlation(Cross-Correlation)PIVFFTPIVCCDInterrogationArea,2-2Figure2-2:Themethodtogetthefluid’svelocity12232-3PIVFigure2-3SchematicsetupofPIVsystemDPIVPIVDPIVPIVPIV2.1.1PIV),(nmx),(nmy),(nmx),(nmy),(lk∑∑∞-∞=∞-∞=++=kllnkmynmxlkR),(),(),((2-1)xy),(lkRklxy2.1.2PIV13PIV2-4()Figure2-4:PIVinterrogationanalysis2.1.3PIV2-52-52-514Figure2-5:AutocorrelationversusCrosscorrelation2.1.42-6Figure2-6:Linearsignaldisplacementfunction),(nmf),(nmgt),(nms),(nmd),(vuF),(vuS),(vuD),(vuG),(vuPIV15),(nmf),(nmg),(nms),(nmf),(nmg),(nms2-7Figure2-7Numericalprocessingflowchart161234CCDintintNNNNNcolrowv×=(2-2)rowNcolNCCDintNintNintN64intN32CCD()()intint11NONNONNvercolhorrowv-×-=(2-3)horOverO2.2PIVPIVPIV2.2.12-8/PIV17[8]Figure2-8Schematiclayoutofexperimentalsetup2.2.2PIVPIV,,PIV2100FlowMapNd:YAG,15Hz,250mJQswitch,8ns,532nm()1mm,20.KadokMegaplusES1.0CCD,10081018,256CCD30/,0.6CCD532nm80C41,DantecPIV2100,CCD;CCD,;(FFT)PIVFlowMap3.11PIVCCD18,,:FlowMap,,P