2015中考数学总复习课件:第29讲 图形的轴对称

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第29讲图形的轴对称要点梳理1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就是它的.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做,折叠后重合的点是对应点.轴对称图形对称轴对称轴要点梳理2.图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的.轴对称图形的对称轴,是任意一对对应点所连线段的.对应线段、对应角.垂直平分线垂直平分线相等要点梳理3.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴__.这样,由一个平面图形得到它的轴对称图形叫做.一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成.垂直平分轴对称变换要点梳理4.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到原图形的轴对称图形.轴对称与轴对称图形轴对称图形和图形的轴对称之间的的区别是:轴对称图形是一个具有特殊性质的图形,而图形的轴对称是说两个图形之间的位置关系;两者之间的联系是:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系.因此,它们是部分与整体、形状与位置的关系,是可以辩证地互相转化的.失误与防范(1)判断图形是否是轴对称图形,关键是理解、应用轴对称图形的定义,看是否能找到至少1条合适的直线,使该图形沿着这条直线对折后,两旁能够完全重合;若能找到,则是轴对称图形,若找不到则不是.(2)如果图形是由直线、线段或射线组成的,那么在画出它关于一条直线的对称图形时,只要画出图形中的特殊点(如线段的端点、角的顶点等)的对称点,然后连接对称点,就可以画出关于这条直线的对称图形.镜面对称原理(1)镜中的像与原来的物体成轴对称.(2)镜子中的像改变了原来物体的左右位置,即像与物体左右位置互换.建立轴对称模型在解决实际问题时,首先把实际问题转化为数学模型,再根据实际以某直线为对称轴,把不是轴对称的图形通过轴对称变换补添为轴对称图形.有关几条线段之和最短的问题,都是把它们转化到同一条直线上,然后利用“两点之间线段最短”来解决.1.(2014·陕西)一个正五边形的对称轴共有__5__条.2.(2012·陕西)如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为__41__.识别轴对称图形【例1】(2014·衡阳)下列图案中,不是轴对称图形的是()A【点评】判断图形是否是轴对称图形,关键是理解、应用轴对称图形的定义,看是否能找到至少1条合适的直线,使该图形沿着这条直线对折后,两旁能够完全重合.若能找到,则是轴对称图形;若找不到,则不是轴对称图形.1.(1)(2014·永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()C(2)(2014·深圳)下列图形中是轴对称图形但不是中心对称图形的是()B作已知图形的轴对称图形【例2】(2014·厦门)在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.解:如图所示:△DEF即与△ABC关于y轴对称的图形【点评】画轴对称图形,关键是先作出一条对称轴,对于直线、线段、多边形等特殊图形,一般只要作出直线上的任意两点、线段端点、多边形的顶点等的对称点,就能准确作出图形.2.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案.(注:①不得与原图案相同;②黑、白方块的个数要相同)(1)是轴对称图形,又是中心对称图形;解:设计方案有多种,在设计时注意每一种图案的具体要求.(1)既是轴对称图形,还应关于中心点对称,有一定的对称及审美要求即可:(2)是轴对称图形,但不是中心对称图形;可不受中心对称的限制,只要是轴对称图形,且黑白数量相等即可:(3)是中心对称图形,但不是轴对称图形.只关于中心对称即可:轴对称性质的应用【例3】(2014·龙东)如图,菱形ABCD中,对角线AC=6,BD=8,M,N分别是BC,CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.【点评】求两条线段之和为最小,可以利用轴对称变换,使之变为求两点之间的线段,因为线段间的距离最短.53.(2014·成都)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.7-1折叠问题【例4】(1)(2014·新疆)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A.15B.215C.17D.217A(2)(2014·黔西南州)如图,将矩形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE,BF,则∠EBF=°.【点评】折叠的过程实际上就是一个轴对称变换的过程,轴对称变换前后的图形是全等图形,对应边相等,对应角相等.454.(2014·黔东南州)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A.6B.12C.25D.45D试题设M是边长为2的正△ABC的边AB上的中点,P是边BC上的任意一点,求PA+PM的最小值.错解当点P为BC中点时,PA+PM的和最小.∵M是AB的中点,∴PM是△ABC的中位线,且AP⊥BC,∴PM=12AC=12×2=1,PA=22-12=3,∴PA+PM=1+3.剖析求两条线段之和为最小,应选用线段的垂直平分线、角平分线、等腰三角形的高作为对称轴来解题.正解作正△ABC关于BC的对称图形△A′BC,M′是M的对称点,故M′是A′B的中点,PM=PM′,∴PA+PM=PA+PM′≥AM′.连接CM′,易知∠ACM′=90°,∴AM′=AC2+CM′2=22+(3)2=7.

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功