新世纪文化教育学习资料1/13小学及小升初复习专题-圆与求阴影部分面积目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解大致分为以下几类:1、从整体图形中减去局部;2、割补法,将不规则图形通过割补,转化成规则图形。重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。例1.求阴影部分的面积。(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)例3.求图中阴影部分的面积。(单位:厘米)例4.求阴影部分的面积。(单位:厘米)例5.求阴影部分的面积。(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。(单位:厘米)例8.求阴影部分的面积。(单位:厘米)新世纪文化教育学习资料2/13例9.求阴影部分的面积。(单位:厘米)例10.求阴影部分的面积。(单位:厘米)例11.求阴影部分的面积。(单位:厘米)例12.求阴影部分的面积。(单位:厘米)例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的面积。(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。例16.求阴影部分的面积。(单位:厘米)新世纪文化教育学习资料3/13例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。例19.正方形边长为2厘米,求阴影部分的面积。例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。例21.图中四个圆的半径都是1厘米,求阴影部分的面积。例22.如图,正方形边长为8厘米,求阴影部分的面积。例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一新世纪文化教育学习资料4/13共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。(单位:厘米)例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。例28.求阴影部分的面积。(单位:厘米)例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。求BC的长度。例31.如图是一个正方形和半圆所组成的图形,其中P为半圆例32.如图,大正方形的边长为6厘米,小正方形的边长为新世纪文化教育学习资料5/13周的中点,Q为正方形一边上的中点,求阴影部分的面积。4厘米。求阴影部分的面积。例33.求阴影部分的面积。(单位:厘米)例34.求阴影部分的面积。(单位:厘米)例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积。新世纪文化教育学习资料6/131.问题1:如图2,用一个边长为2cm的正方形纸片,剪去两个面积最大的半圆,剩余部分的面积是多少?剩余图形的周长呢?分析:图形中的阴影部分的面积与思考题有何关系?你是如何看出的?周长是由哪些线组成的?阴影部分的面积=正方形的面积—圆的面积阴影部分的周长=正方形的两边+圆的周长解:r=221=1(cm)S=22114.3r=3.14C=114.322r=6.28S阴=4-3.14=0.86,C阴=28.1028.622答:阴影部分的面积为0.86平方厘米,周长为10.28厘米.变式1:如图3,用一个边长为2cm的正方形纸片,剪去4个面积相等的扇形,如果扇形的半径都是1cm,圆心角都是90°,那么剩余部分的面积是多少?剩余图形的周长呢?变式2:如图4,正方形的边长为2,求阴影部分的面积与周长?2.问题2:如图5,正方形边长为10cm,求阴影部分的面积和周长?解:r=10cm,n=90°l=1014.318090180rn=15.7S=221014.336090360rn=78.5S阴=100-78.5=21.5,C阴=7.357.1520答:阴影部分的面积为21.5平方厘米,周长为35.7厘米.变式1:如图6,正方形边长为10cm,求阴影部分的面积和周长?变式2:如图7,正方形边长为10cm,求阴影部分的面积和周长?变式3:如图8,正方形边长为10cm,求阴影部分的面积和周长?图2图3图5图8图4图6图7新世纪文化教育学习资料7/13举一反三★巩固练习【专1】下图中,大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积。【专1-1】.右图中,大小正方形的边长分别是12厘米和10厘米。求阴影部分面积。【专1-2】.求右图中阴影部分图形的面积及周长。【专2】已知右图阴影部分三角形的面积是5平方米,求圆的面积。【专2-1】已知右图中,圆的直径是2厘米,求阴影部分的面积。【专2-2】求右图中阴影部分图形的面积及周长。新世纪文化教育学习资料8/13【专2-3】求下图中阴影部分的面积。(单位:厘米)【专3】求下图中阴影部分的面积。【专3-1】求右图中阴影部分的面积。【专3-2】求右图中阴影部分的面积。【专3-3】求下图中阴影部分的面积。新世纪文化教育学习资料9/13新世纪文化教育学习资料10/13完整答案例1解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2解:这也是一种最基本的方法用正方形的面积减去圆的面积。设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3解:最基本的方法之一。用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。例4解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。例6解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注:8、9、10三题是简单割、补或平移)例11解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。(π-π)×=×3.14=3.66平方厘米例12.解:三个部分拼成一个半圆面积.π()÷2=14.13平方厘米例13解:连对角线后将叶形剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米例14解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.分析:此题比上面的题有一定难度,这是叶形的一个半.解:设三角形的直角边长为r,则=12,=6圆面积为:π÷2=3π。圆内三角形的面积为12÷2=6,例16解:[π+π-π]=π(116-36)=40π=125.6平方厘米新世纪文化教育学习资料11/13阴影部分面积为:(3π-6)×=5.13平方厘米例17解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。所以面积为:1×2=2平方厘米例20解:设小圆半径为r,4=36,r=3,大圆半径为R,=2=18,将阴影部分通过转动移在一起构成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22解法一:将左边上面一块移至右边上面,补上空白,则左边为一三角形,右边一个半圆.阴影部分为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二:补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以阴影部分的面积为:π()-8π+16=41.12平方厘米例23解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部分的面积为:4π-8(π-1)=8平方厘米例24分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.解:阴影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25分析:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26解:将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积,为:5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27解:因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,例28解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5新世纪文化教育学习资料12/13π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米弓形面积为:[π÷2-5×5]÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.解:甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-×4×6=5π-12=3.7平方厘米例30.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56则X=32.8厘米例31.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5两弓形PC、PD面积为:π-5×5所以阴影部分的面积为:37.5+π-25=51.75平方厘米例32解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平