§4.5.1对数的运算指数←→对数ab=Nb=logaN指数式对数式底数←→底数幂←→真数1.关系:2.特殊对数:①常用对数—②自然对数—(a>0,且a≠1,N>0)以10为底的对数:lgN以e为底的对数:lnN3.两个基本对数:logaa=1,loga1=0(a>0,且a≠1)底的对数等于1;1的对数等于0.2.求下列各式中x的值:x1ln)2(2lg)3(xx10lg)1(1.若log(x-1)(3-x)有意义,求x的取值范围.证明:设,logpMa,logqNa由对数的定义,得:,paMqaNqpaaqpaqpMNalog因此NMMNaaalogloglog)(两个正数的积的对数,等于同一底数这两个数的对数的和.MN由对数的定义,得:NMMNaaalogloglog)(对数的运算性质1证明:设,logpMa,logqNa由对数的定义,得:,paMqaN因此两个正数的商的对数,等于被除数的对数与除数的对数的差.由对数的定义,得:对数的运算性质2NMNMaaalogloglogqpaaqpaNMqpNMalogNMNMaaalogloglog证明:设,logpMa由对数的定义,得:,paM因此正数的幂的对数,等于幂指数乘以这个数的对数.由对数的定义,得:对数的运算性质3npanMMnManaloglognpMnalogMnManaloglog积、商、幂的对数运算法则:其中a0,a1,M0,N0.)(MNalogNMalognaMlogNMaaloglogNMaaloglogMnalog你的记忆技巧是什么?下列计算是否正确:)5lg()2lg()5()2lg()1()5ln(2)5ln()2(2把左右两列中一定相等的用线连起来NMaaloglogNMalognaMlog)(logMNaNMaaloglogMnalogNMaaloglog)log(NMNMaaloglog)log(NMnaM)(log5log15log)2(332lg5lg)2(31log3log)1(553log6log)1(2236log2)25lg(2log2110lg1例1计算3log6log)1(222lg5lg)2(解:你试试?例2计算81log)1(35lg20lg)2(你试试?125log)1(52lg200lg)2(81log)1(3解:433log3log4345lg20lg)2()520lg(100lg210lg22log372log)2(33)39(log)1(629例3计算解:)39(log)1(62969293log9log9log29399log2322log372log)2(333332log72log8log72log33872log39log3233log2你试试?)42(log)1(75252log26log2)2(1212329)3(log9lg81lg)1(例4计算你试试?9log27log)1(33)2724091(log)2(3解:9lg81lg)1(9lg9lg29lg9lg22)2724091(log)2(327243log39log3233log2)8141(log)2(21.两个基本对数:(a>0,且a≠1)底的对数等于1;1的对数等于0.logaa=1,loga1=02.对数运算法则:其中a0,a1,M0,N0.)(MNalogNMalognaMlogNMaaloglogNMaaloglogMnalogP83练习1、2