2016年四川省宜宾市中考数学试卷一、选择题(每小题3分,共24分)1.﹣5的绝对值是()A.B.5C.﹣D.﹣52.科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为()A.3.5×10﹣6B.3.5×106C.3.5×10﹣5D.35×10﹣53.如图,立体图形的俯视图是()A.B.C.D.4.半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π5.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3D.26.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.27.宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4B.5C.6D.78.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度二、填空题(每小题3分,共24分)9.分解因式:ab4﹣4ab3+4ab2=.10.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=°.11.已知一组数据:3,3,4,7,8,则它的方差为.12.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.13.在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.14.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=.15.规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:lognan=n.logNM=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.16.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三、解答题(本大题共8小题,共72分)17.(1)计算;()﹣2﹣(﹣1)2016﹣+(π﹣1)0(2)化简:÷(1﹣)18.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.19.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20.2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?21.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)22.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.23.如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.24.如图,已知二次函数y1=ax2+bx过(﹣2,4),(﹣4,4)两点.(1)求二次函数y1的解析式;(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,直线y=m(m>0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,y1、y2交于A、B两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与y1、y2的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.2016年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣5的绝对值是()A.B.5C.﹣D.﹣5【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选:B.2.科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为()A.3.5×10﹣6B.3.5×106C.3.5×10﹣5D.35×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000035=3.5×10﹣6,故选:A.3.如图,立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:立体图形的俯视图是C.故选:C.4.半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π【考点】扇形面积的计算.【分析】根据扇形的面积公式S=计算即可.【解答】解:S==12π,故选:D.5.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.7.宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4B.5C.6D.7【考点】二元一次方程组的应用.【分析】设生产甲产品x件,则乙产品(20﹣x)件,根据生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,列出不等式组,求出不等式组的解,再根据x为整数,得出有5种生产方案.【解答】解:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A产品12件,B产品8件;故选B.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【考点】函数的图象.【分析】根据函数图象和速度、时间、路程之间的关系,分别对每一项进行分析即可得出答案.【解答】解:A、根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B、根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C、根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D、在4至8秒内甲的速度都大于乙的速度,正确;故选C.二、填空题(每小题3分,共24分)9.分解因式:ab4﹣4ab3+4ab2=ab2(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.故答案为:ab2(b﹣2)2.10.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=75°.【考点】平行线的性质.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为:75.11.已知一组数据:3,3,4,7,8,则它的方差为4.4.【考点】方差.【分析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:[(3﹣5)2+(3﹣5)2+(4﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.12.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,