HansJournalofChemicalEngineeringandTechnology化学工程与技术,2017,7(6),255-262PublishedOnlineNovember2017inHans.://doi.org/10.12677/hjcet.2017.76036文章引用:李凯,胡以怀,曾存.船舶柴油机NOx排放法规及排放控制技术[J].化学工程与技术,2017,7(6):255-262.DOI:10.12677/hjcet.2017.76036NOxEmissionRegulationsandEmissionControlTechnologyforMarineDieselEngineKaiLi,YihuaiHu,CunZengShanghaiMaritimeUniversity,ShanghaiReceived:Nov.6th,2017;accepted:Nov.18th,2017;published:Nov.27th,2017AbstractWiththedevelopmentoftheworldeconomyandtheSilkRoadonthesea,shiptransporthasbe-comeoneoftheimportantmodesoftransportofinternationalgoods.Intheprocessofshiptransport,dieselengineemissionsofnitrogenoxides,sulfuroxides,particulatematterandotherpollutantsonthenaturalenvironmentcausedgreatdamage.Forportcitiesandcoastalcities,thedamageofexhaustpollutantswillbegreater.ThispapermainlyanalyzestheNOxemissionregula-tionsofexistingmarinedieselenginesandputsforwardthemeasurestocontroltheNOxemissionofdieselengines.Studyingasetofequipmenttoachievecontrolofavarietyofmarinedieselen-gineemissionsofpollutants,removeavarietyofpollutants,andfocusonfootprint,economyandefficiencysimultaneously,willbeadirectionofthestudyinthefuture.KeywordsMarineDieselEngine,EGR,EmissionControl船舶柴油机NOx排放法规及排放控制技术李凯,胡以怀,曾存上海海事大学,上海收稿日期:2017年11月6日;录用日期:2017年11月18日;发布日期:2017年11月27日摘要随着世界经济全球化和海上丝绸之路的发展,船舶运输已经成为国际货物的重要的运输方式之一。在船舶运输过程中,柴油机排放的氮氧化物、硫氧化物、颗粒物等废气污染物对自然环境造成了极大的危害。李凯等DOI:10.12677/hjcet.2017.76036256化学工程与技术尾气污染物对于港口城市和沿海城市,危害会更大。本文主要对现有船舶柴油机NOx排放法规进行分析,提出控制船舶柴油机NOx排放的措施。能否研究一套设备同时实现控制多种船舶柴油机废气排放出的污染物,并且可以去除多种污染物,且这套设备具有占地面积小、经济性好、效率高等有点,将是以后研究的方向。关键词船舶柴油机,EGR,排放控制Copyright©2017byauthorsandHansPublishersInc.ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY).引言随着全球环境的日益恶化,人们环境保护意识的不断提高,船舶废气排放造成大气污染的问题越来越引起人们的重视。船舶柴油机废气排放的主要污染物包括CO、HC、NOx、SOx和PM[1]。研究表明,船舶排放的NOx、SO2、CO2分别占全球人为污染的15%、4%~9%和2.7%。我们可以看出,在废气污染物排放中,氮氧化物的含量最多,所以我们很有必要先对船舶废气排放中的氮氧化物进行控制。通过对NOx排放法规进行分析,了解NOx排放的危害,并提出减少NOx排放的措施,经过不断优化,不断试验,最后应用到海船船舶,使船舶能够符合越来越严格的国际海事组织关于船舶废气排放的标准。2.船用柴油机NOx排放法规MARPOL73/78公约附则VI“1997年议定”2005年5月19日生效,附则中对安装在2000年1月1日或以后建造的船舶上,输出功率超过130kW的柴油机(或经过重大改装的)实施TierI,NOx的排放量小于17g/kwh,从2011年1月1日实施TierII,NOx的排放量小于14.4g/kwh,从2016年1月1日开始实施TierIII,NOx的排放量小于3.4g/kwh[2]。图1为NOx排放法规对不同转速柴油机实施情况。第三阶段(TierIII)的NOx排放限值将于2016年1月1日实施,其仅对于IMO指定的NOx排放控制区(NECA:NOxEmissionsControlAreas)。目前NECA是指现行MARPOL附则VI中指定的“北海区域”和“波罗的海区域”[3],亦可以见图1所示。3.船用柴油机NOx排放的危害船舶柴油机的排放污染物中的氮氧化物是燃烧过程中氮的各种氧化物的总称,具体包括NO、NO2、N2O4、N2O、N2O3、和N2O5等,船舶柴油机排放的氮氧化物绝大多数是NO和NO2,其余的含量都很少。氮氧化物排放的危害程度主要取决于毒性、在空气中的浓度、吸入受污染空气的时间以及每分钟吸入的体积。NO是无色但有轻度刺激性气味的气体,它在低浓度时,对人体健康无明显的影响,高浓度时造成人与动物神经系统障碍。尽管NO直接危害性不大,但是NO会在大气中可以被氧化成剧毒的NO2。表1所示为各种浓度NO2对人体的影响[4]。4.船用柴油机NOx排放控制技术目前,应用于船舶柴油机NOx排放控制的技术主要有燃料预处理、缸内净化和尾气后处理[5],具体处理技术如图2所示。OpenAccess李凯等DOI:10.12677/hjcet.2017.76036257化学工程与技术Table1.EffectsofvariousconcentrationsofNO2onthehumanbody表1.各种浓度的NO2对人体的影响中毒程度NO2(ppm)影响轻度中毒5~1015~25闻到强烈的刺激臭味眼、鼻呼吸遭受到刺激,人只能短时间忍受重度中毒5080刺激强烈,1min内出现呼吸异常,3~5min引起胸痛、恶心、咳嗽反复发作,引起肺气肿死亡危险100~150250短时间内有生命危险,1h内会因肺气肿死亡很短时间即可造成死亡Figure1.NOxemissionregulationsontheimplementationofdifferentspeeddieselengine图1.NOx排放法规对不同转速柴油机实施情况Figure2.ControltechnologyofNOxemissioninship图2.船机NOx排放控制技术李凯等DOI:10.12677/hjcet.2017.76036258化学工程与技术下面主要从以下方面进行阐述:4.1.燃烧系统优化燃烧系统对燃烧室内气体的流动、燃油与空气的混合及混合气体的燃烧有很大的影响。历来是国内外各大研究机构及主机厂的重点研究内容。2010年至今,我国船舶研究所就在6CS21、6W16、SCE270、8CS21等机型开发过程中,不断对燃烧系统进行优化,积累了一定的缸内燃烧系统的开发经验。根据开发经验,通过对燃烧系统中喷油器型式的优化,可在保持柴油机油耗率不变的情况下,降低约10%的NOx排放;在油耗率≤5%的前提下,通过进行燃烧室型线的优化,可降低约30%的NOx排放[6]。4.2.推迟喷油推迟喷油正时后,柴油机燃烧过程发生整体延滞,滞燃期变短,滞燃期内喷入气缸的燃油量降低,预混燃烧速率降低,柴油机的火焰温度降低,NOx的生成量减少。传统机械式喷油系统喷油定时的控制受到较大的限制,电控式喷油系统喷油定时的控制也更加精确、灵活。一般通过推迟喷油降低30%的NOx排放量,燃油消耗会增加5%左右。在中国船舶重工集团公司第七研究所与瓦锡兰联合开发W16的过程中,为满足IMOTierII排放法规,将喷油正时由上止点前11˚CA调整为上止点前7˚CA后,NOx排放降低约15.4%。4.3.米勒循环所谓米勒循环就是通过调整进气门关闭角,使进气门提前关闭,影响进气充量,降低压缩终点的温度,抑制NOx生成,达到降低排放的目的[7]。如图3所示,采用米勒循环与传统凸轮轮廓进行比较,可以看出,采用米勒循环之后,进气门会更早关闭,同时气阀升程会变高,从而影响进气量,进而可以降低压缩点的温度,抑制NOx生成。如图4所示,试验表明,在保证足够增压压力的前提下,在一定的范围内,米勒的增强,对燃油消耗率和NOx排放的影响基本呈正面关系;在保证增压压力的前提下,与传统非米勒相比,恰当的米勒可以降低NOx排放约40%以上,经济性基本保持不变。Figure3.ComparisonofMillercyclewithtraditionalcirculation图3.米勒循环与传统循环的比较李凯等DOI:10.12677/hjcet.2017.76036259化学工程与技术Figure4.RelationshipbetweenNOxemissionsandfuelconsumption图4.NOx排放与燃油消耗率的关系4.4.进气加湿加水燃烧包括进气加湿、油水乳化和缸内直接喷水等方式。进气加湿降低了进气中单位体积O2浓度含量,同时水较高的比热容可以有效降低缸内燃烧温度,抑制NOx生成。2013年我国某公司对单缸机进行进气加湿试验,试验结合仿真计算,结果表明,进气加湿NOx降低量可以达到50%~60%。Wartsila公司通过加热器对增压器后水加热汽化,再经除雾器除去未汽化的水,可以得到70℃~90℃饱和空气,如图5所示,为该公司的CASS系统。4.5.EGR技术EGR技术就是通过增加混合气比热容,降低最高燃烧温度,另外,废气稀释作用降低了混合气氧浓度,使化学反应速度下降,燃烧滞后,缩短在高温下滞留时间,破坏高温NOx的生成条件,从而达到抑制NOx生成的目的。图6所示为NOx排放量与EGR率的关系图,从图中我们可以看出,EGR率越高,则NOx排放量越少。近年来,我国许多研究机构对船用中速柴油机EGR系统做了较为深入的研究,通过在6CS21船用中速柴油机上进行了EGR试验研究,试验的结果表明:以轻柴油为燃料,20%EGR率可降低70%~80%的NOx排放。如图7所示为柴油机EGR处理系统,将柴油机尾气回收至进气口,稀释燃烧室内氧气,有利于点火延迟;且烟气热容量较大,相同的放热量,气体温升少,从而降低NOx生成。4.6.SCR技术选择性催化氧化(SCR)技术是指在催化剂和氧气存在的条件下,在较低的温度范围,如280℃~420℃内,还原剂(如氨、CO或碳氢化合物等)有选择性地将废气中的NOx还原成N2和水[8],以此减少NOx的排放。催化还原过程的主要部件是装有催化剂的反应器和氨的添加系统。氨源既可是处在压力下的无水液氨,也可为处在大气压力下的氨水溶液。氨水在一个电加热或者蒸汽加热的蒸发器内蒸发,接着用空气进行稀释,这些过程