第一章集合1.1集合的表示方法涪陵一职中:陈平创设情景兴趣导入问题不大于5的自然数所组成的集合中有哪些元素?小于5的实数所组成的集合中有哪些元素?元素是可以一一列举的只有0、1、2、3、4、5这6个元素元素无法一一列举但特征明显元素有无穷多个,特征:(1)集合的元素都是实数;(2)集合的元素都小于5.动脑思考探索新知.列举法.把集合的元素一一列举出来,写在大括号内,元素之间用逗号隔开.1描述法.大括号内画一条竖线,竖线的左侧为集合的代表元素,竖线的右侧为元素所具有的特征性质.2问题不大于5的自然数所组成的集合中有哪些元素?小于5的实数所组成的集合中有哪些元素?元素是可以一一列举的列举法{0,1,2,3,4,5}动脑思考探索新知元素无法一一列举但特征明显描述法{|5,}xxxR巩固知识典型例题.例2用列举法表示下列集合:⑴大于-4且小于12的全体偶数;⑵方程的解集.2560xx分析这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560xx得到.用列举法表示集合时,不必考虑元素的排列顺序,但是列举的元素不能出现重复.{-2,0,2,4,6,8,10};{-1,6}.巩固知识典型例题.例3用描述法表示下列各集合:(1)不等式2x+1≤0的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析用描述法表示集合关键是找出元素的特征性质.(1)解不等式就可以得到不等式解集元素的特征性质;(2)特征性质是“元素都能写成21()kkZ的形式”.(3)特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.12xx„21,xxkkZ,0,0xyxy运用知识强化练习.1.用列举法表示下列各集合:(1)方程2340xx的解集;(2)方程430x的解集;(3)由数1,4,9,16,25组成的集合;(4)正奇数的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x的解集;(3)大于5的偶数所组成的集合.(4)不等式253x的解集.教材练习1.1.2理论升华整体建构.集合的表示有哪几种方法?各自有什么特点?1如何选择集合的表示法?2列举法、描述法.用列举法表示集合,元素清晰明了;用描述法表示集合,特征性质直观明确;表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示巩固知识典型例题.例4用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-75的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解{x|x4}解{-5}解{4,6,8,10}解{x|x≤5}巩固知识典型例题.练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x的解集;(3)不等式465x的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x的解集;(6)不等式组的解集.3x+30x-60作业:1、教材P6A组第2、3题,B组第1、2题。