36820108JOURNALOFBEIJINGUNIVERSITYOFTECHNOLOGYVol.36No.8Aug.2010100124.1234.5Taylor.Taylor46G05A0254-0037201008-1135-062010-05-12.1938—.01-6.1xlFig.1Thechangeratesofthetwo-dimensionalfunctionatapointxinadirectionl.《》.1fx=fx1x2x、l=cosθsinθTfl=limα→0fx+αl-fx‖αl‖x≥01.1fl=limα→0fx+αl-fx‖αl‖=limα→0fx1+αcosθx2+αsinθ-fx1x2α=limα→0fx1+αcosθx2+αsinθ-fx1x2+αsinθ+fx1x2+αsinθ-fx1x2α=fx1cosθ+fx2sinθ[=fx1fx]2cosθsin{}θ=ΔTflΔfx[=fxx1fxx]2Tfx..xl∈Enfx∈C1‖l‖=1α∈E1α≥0fxlfl=limα→0fx+αl-fx‖αl‖=limα→0fx+αl-fxα2010fx+αl=Fαfl=limα→0Fα-F0α=F'α|α=0=∑ni=1fxi+αli·dxi+αlidα|α=0=ΔTflΔf[=fx1…fx]nTL'Hospitalfl=limα→0fx+αl-fxα=limα→[0dfx+αldαdαd]α=∑ni=1fxxili=ΔTfl11.1xl∈Enfx∈C2fx/lfxxlfx2fx/l2fx/lxl.1.2fxl=ΔTfxl=lTΔfx2fxl2=(lfx)l=lT(Δfx)l=lTΔlTΔfx=lTΔlTΔfx+ΔΔTfxl=lTΔ2fxl21lΔlT=02ΔaTb=ΔaTb+ΔbTaΔaTb=(Δ∑ni=1aib)i=∑ni=1Δaibi=∑ni=1Δaibi+aiΔbi=Δa1…Δanb+Δb1…Δbna=ΔaTb+ΔbTa.fxl=∑ni=1fxxili2fxl2=∑nj=1x(j∑ni=1fxxil)ilj=∑nj=1∑ni=12fxxixjlilj=lTΔ2fxl1.3xl∈Enfx∈Cmm-1fx/lm-1fxxlm-1fxmmfx/lmm-1m-1fx/lm-1xl.m-1fxlm-1=∑ni1=1…∑nim-1=1m-1fxxi1…xim-1li1…lim-163118mfxlm=∑nim=1xi(m∑ni1=1…∑nim-1=1m-1fxxi1…xim-1li1…lim)-1lim=∑ni1=1…∑nim=1mfxxi1…ximli1…lim2.22.12Fig.2Multivariatefunctionatagivenpointalongaanydirectionisregardedasfunctionwithsimplevariable.fxxlx+αlαnfxα2.Fα=fx+αl3-n+1x+αlfxFα.Fαl.dFαdα=∑ni1=1fx+αlxi1+αli1dxi1+αli1dα=∑ni1=1fx+αlxi1+αli1li1d2Fαdα2=∑ni2=1[dFαd]αxi2+αli2li2=∑ni1=1∑ni2=12fx+αlxi1+αli1xi2+αli2li1li2dm-1Fαdαm-1=∑ni1=1…∑nim-1=1m-1fx+αlxi1+αli1…xim-1+αlim-1li1...lim-1dmFαdαm=∑ni1=1…∑nim=1mfx+αlxi1+αli1…xim+αlimli1...lim2α=0dmFαdαmα=0=fmxlmm=01…44α=0.2.23fx.3a、bfxfx3c、dfxf'x=0x.1fxxFαα=0F'α|α=0=fx/l=0ΔTfl=0l731120103、Fig.3ExtremeconditionsofquadraticandthricefunctionswithsimplevariableΔfx=0…0Tfxx.fxxxlfxl=0.2fxxFαα=0F'α|α=0=0F″α|α=0>0fx/l=02fx/l2>0Δfx=0…0TlTΔ2fxl>0lΔ2fx.Δfx=0…0TΔ2fxfxx.fxxxlfx/l=02fx/l2>0.2.37-8n×nAnx≠0xTAx≥0A..fx=xTAx/2x∈En5l∈Enfx/l=Ax2fx/l2=lTΔ2fxl=lTAlA2fx/l2≥0.“”6l∈En.312Δ2fxfx383118.5、.5、.2.4Ax=bfx=12xTAx-bTx6fxl=Ax-bTlAx=bfx/l=0Ax=bx=A-1b.Afxx=A-1bAfxx=A-1b.6.2.5TaylorTaylor.TaylorTaylor.mx0mTaylorx≈x|x=0+1x|x=0x+…+1mmx|x=0xm77x∈Enfxx0l∈Enα∈E1lx=x0+αlfx0+αlαmTaylorfx=fx0+αl=Fα≈F0+dFαdαα=0α+12d2Fαdα2α=02+…+1mdmFαdαmαm848fx≈fx0+fxlx=x0α+122fxl2x=x0α2+…+1mmfxlmx=x0αm9x=x0+αlαl=x-x0αli=xi-x0i29mTaylorfx≈fx0+∑ni=1fxxix=x0xi-x0i+12∑ni1=1∑ni2=12fxxi1xi2x=x0xi1-x0i1xi2-x0i2+…+1m∑ni1=1…∑nim=1mfxxi1…ximx=x0xi1-x0i1…xim-x0imm=2fx≈fx0+ΔTfx|x=x0x-x0+12x-x0TΔ2fx|x=x0x-x03931120101、、23..1RUDINW.PrinciplesofmathematicalanalysisM.3rded.S.l.McGraw-HillScienceEngineering1976.2.M.1990.3SPIVAKM.CalculusM.3rded.S.l.GilbertStrang1994.4THOMASGBWEIRMDHASSJetal.Thomas'calculusM.11thed.BostonAddisonWesley2004.5ZAKONE.MathematicalanalysisM.S.l.TheTrilliaGroup2004.6.、M.6.2007.7LEONSJ.LinearalgebrawithapplicationsM..2004.8.M.5.2007.AnExtensiontoHighOrderforDirectionalDerivativeofMultivariateFunctionSUIYun-kangTheMechanicalandElectricalEngineeringCollegeBeijingUniversityofTechnologyBeijing100124ChinaAbstractThedirectionalderivativeconceptofthemultivariatefunctionisexpandedfromfirstordertohighorderinthispaper.Aftergettingthedefinitionofsecondorderdirectionalderivativeandthecalculationformulathehighorderdirectionalderivativehasbeengiven.Applicationsofthehighorderdirectionalderivativeareproposedasfollowing1Ageneralwaytoexpandingsimplevariablefunctioncharacteristicstomultivariatefunctionispresented.2Thenecessaryconditionsnecessaryandsufficientconditionsofextremevaluecriterionoffunctionareeasilyobtained.3Thegeometricalmeaningofsemi-positiveandsemi-negativedefiniteisexplainedaccordingtosecond-orderdirectionalderivatives.4Itisrevealedthatthereisextremevalueproblemofthefunctionwhenthematrixofthelinearequationsispositiveornegativedefinite.5Taylor'sexpansionformulaofthemultivariatefunctioniseasilydeduced.Keywordsdirectionalderivativehighorderdirectionalderivativesemi-positivedefinitematrixsemi-negativedefinitematrixtaylor'sexpansionofmultivariatefunction0411