电子学与计算机电子学电子学是一门以应用为主要目的的科学和技术。电子学是以电子运动和电磁波及其相互作用的研究和利用为核心而发展起来的。它作为新的信息作业手段获得了蓬勃发展。电子是基本粒子家族中的一个主要成员。电子的静止质量是9.10953×10-28克,为氢原子质量的1/1836。电子荷有1.602189×10-19库仑的负电。宇宙间存在着电子的对立物──正电子,但它的寿命很短,一般情况下是不存在的。质子荷有与电子电荷绝对值相等的正电荷,是氢原子质量的主要构成部分。在通常情况下,原子含有等量的电子和质子,对外不显电性。但当它俘获或失去电子时对外显现电性,称为离子。离子在电子学中也占有一定的位置,但远不如电子的应用广泛。电荷周围伴有电场,电场对电荷产生力的作用。电荷的运动产生电流,电流周围又伴有磁场,磁场对磁体或电流产生力的作用。当电流变化时,周围的电场和磁场也会随之发生变化。这种变化以波的形态携载能量以一定的速度向外传播,这种波称为电磁波。电流变化越快,所产生的电磁波波长越短,但传播速度不变。电磁波在真空中的传播速度为每秒299792.46公里。电磁场和电磁波还能和带电粒子发生相互作用,产生能量变换。理论和实践都证明,光波、X射线、γ射线等都是电磁波,只是波长不同。电子和电磁波具有波、粒二象性;在电子运动速度极高和电磁波波长极短时,波、粒二象性十分显著。电子在真空、气体、液体、固体和等离子体中运动时产生的许多物理现象,电磁波在真空、气体、液体、固体和等离子体中传播时发生的许多物理效应,以及电子和电磁波的相互作用的物理规律,合起来构成电子学的基础研究的主要内容。电子学不仅致力于这些物理现象、物理效应和物理规律的研究,尤其致力于这些物理现象、物理效应和物理规律的应用。电子学作为科学技术的门类之一具有十分鲜明的应用目的性,这是电子学的重要特点之一。电子学是为信息事业、能源事业和材料事业服务的。信息作业的基本内容可以概括为信息的采集、变换、传输、交换、存储、处理和再现等。电子学为当代各种信息作业提供了强有力的技术手段,如计算机、通信网、广播电视网、雷达、遥感技术等,极大地增强了人类的感官和大脑的作用,使现代人类社会的生产活动、经济活动和社会活动的效率大大提高。电子学使人类跨入了信息社会的新阶段。能源供给人类生产和生活以所需的动力。核能和太阳能正日益受到重视,太阳能是可再生能源。据计算,太阳辐射到地球上的峰功率达一百几十万亿千瓦。用半导体制成的太阳电池是利用太阳能的重要手段。电子学在开发和利用新旧能源方面,日益显示其重要作用。一门新兴分支学科──能电子学正在兴起。材料是现代人类社会赖以存在和发展的物质基础。电子学在改造现有材料、创造新型材料、进行材料分析和材料加工作业中,同样也发挥着重要作用,并且往往是通过电子技术改变能态而实现的。经历了约一个世纪不停息的开拓和发展,现代的电子学已发展成为当代最引人注目的专业和学科之一。电子学的历史电子学诞生迄今只有100年左右的历史,它是在早期的电磁学和电工学的基础上发展起来的。在电子学诞生之前,人类对于电磁现象的研究已相当深入。一系列物理定律已经确立,如库仑定律、安培定律、欧姆定律、楞次定律、法拉第电磁感应定律等。英国J.C.麦克斯韦集以往电磁学研究之大成,建立了电磁学的完整理论──麦克斯韦方程,并从理论上预言了电磁波的存在。与此同时,人们对电磁学的利用也达到了一定的水平,有线电报和有线电话已相继发明,并且有了横贯美洲大陆的电报、电话线路和横跨大西洋的海底电缆。美国T.A.爱迪生发明了白炽灯。所有这些,都为电子学的诞生准备了充足的条件。标志着电子学诞生的两个重大的历史事件,是爱迪生效应的发现和关于电磁波存在的验证实验。1883年,爱迪生在致力于延长碳丝白炽灯的寿命时,意外地发现了在灯丝与加有正电压的电极间有电流流过,电极为负时则无电流,这就是爱迪生效应。这一发现导致了后来电子管的发明。1887年,德国H.R.赫兹进行了一项实验,他用火花隙激励一个环状天线,用另一个带缝隙的环状天线接收,证实了麦克斯韦关于电磁波存在的预言,这一重要的实验导致了后来无线电报的发明。电子学在发展过程中取得了许多有重大意义的成就。无线电报还在电子学诞生以前,美国S.莫尔斯就于1837年发明并建成了电报线路,赫兹的实验则架起了一座从“有线”通向“无线”的桥梁。1895年,意大利G.马可尼在赫兹实验的基础上成功地进行了2.5公里距离的无线电报传送实验。1896年,俄国А.С.波波夫也独立地进行了约250米距离的类似试验,他传送的第一份电文就是“赫兹”。此后数年,马可尼在英国进行了一系列卓有成效的工作,使得无线电报的传送距离不断延伸。1899年,跨越英吉利海峡的试验成功;1901年,跨越大西洋的3200公里距离的试验成功。马可尼以其在无线电报的发展以及由此开创的无线电通信事业上的成就,获得了1909年的诺贝尔奖金物理学奖。无线电报的发明,是人类利用电磁波的第一个巨大成就,电子学从此开始了一个研究和利用电磁波的极其兴旺的时期。电子管爱迪生虽然发现了热电子发射效应(即爱迪生效应),但他并未意识到这一效应的意义,而且对它的机理也不清楚。1897年,英国J.J.汤姆逊揭示出形成爱迪生效应的荷电粒子是电子,爱迪生效应乃是一种热电子发射现象。1904年,英国J.A.弗莱明第一个把爱迪生效应付诸实用,发明了二极电子管。二极电子管的发明为无线电报接收提供了一种灵敏可靠的检波器。1906年,美国L.德福雷斯特发明具有放大能力的三极电子管,为当时蓬勃发展的无线电报通信事业提供了一种极其有用的器件。三极电子管以后,又出现了四极管、五极管、更多极的电子管和复合管,形成了包括收信管、发射管、低频管、高频管、微波管和超小型管等系列。电子管是电子器件的第一代,在晶体管发明以前的近半个世纪里,电子管几乎是各种电子设备中唯一可用的电子器件。电子学随后取得的许多成就,如电视、雷达、计算机的发明,都是和电子管分不开的。就是在固体电子学十分兴旺的现代,以大功率电子管(特别是微波功率电子管)和电子束管为代表的真空电子学也仍然是一个活跃的领域。广播与电视1876年,美国A.G.贝尔在美国建国100周年博览会上展示了他所发明的有线电话。此后,有线电话便迅速普及开来。G.马可尼发明无线电报,促成了无线电话和无线电广播的出现。1906年,美国R.A.费森登进行了一项很有意义的实验,他用50千赫频率发电机作发射机,用微音器直接串入天线实现调制,首次使大西洋航船上的报务员听到了他从波士顿播出的音乐,这是无线电广播发明的先声。1916年,美国G.D.萨诺夫最先提出向公众进行无线电广播的设想,但因第一次世界大战爆发而未能实现。1919年,第一个定时播发语言和音乐的无线电广播电台在英国建成。次年,在美国的匹兹堡城又建成一座无线电广播电台。此后,无线电广播事业即在世界范围内得到普及,从中波扩展到短波、超短波,从调幅扩展到调频、脉冲调制等,卫星直播也已实现。电视的发明可追溯到1884年德国P.G.尼普科夫关于机械扫描电视的设想。把尼普科夫设想付诸实现的是英国J.L.贝尔德。1927年,他成功地用电话线路把图像从伦敦传至大西洋中的船上。不过这还不是现代类型的全电子电视,第一个对全电子电视作出实际贡献的是V.K.兹沃雷金。他在1923年和1924年相继发明了摄像管和显像管。1931年,他组装成世界上第一个全电子电视系统。此后几年,迭经改进,约在30年代末,英美先后开始了试验性的电视广播。第二次世界大战后,电视广播便在各国逐渐普及。广播、电视的发明,不仅使人类的文化生活更加丰富多彩,而且为人类提供了一种公共的信息媒介。雷达物体,特别是金属物体(如舰船),具有反射电磁波的能力,在赫兹、马可尼、波波夫时代早已为人所知。在雷达发明之前,利用脉冲无线电装置测量电离层高度的工作已进行多年。第二次世界大战前夕,在飞机成为主要进攻武器的情况下,英、美、德、法等国均投入较多的人力,竞相研制一类能早期警戒飞机的装置。1936年,英国R.A.沃森-瓦特设计的警戒雷达最先投入了运行。它架设在英国的东岸,有效地警戒了来自德国的轰炸机。1938年,美国研制成第一部能指挥火炮射击的火炮控制雷达,大大提高了火炮的命中率。1940年,出现能产生微波高功率的多腔磁控管,次年,第一部微波雷达研制成功。1944年,能够自动跟踪飞机的雷达研制成功。1945年,能消除背景干扰显示运动目标的动目标显示技术的发明,使雷达更加完善。在整个第二次世界大战期间,雷达成了电子学中最活跃的部分之一。近炸引信也属于雷达性质,它成百倍地提高了炮火威力。电子计算机计算工具的发明,经历了漫长的道路。从古代中国的算筹和算盘到16世纪西方的计算尺和齿轮式计算机,从机械式计算机到电子计算机,从手动计算到自动计算,从十进制到二进制,是一个逐步发展的过程。电子计算机的应用越来越广泛,从科学计算扩展到事务管理、过程控制、情报检索、人工智能等许多领域,对人类的生产和生活产生了巨大的影响。晶体管正当电子管进入全盛时期,美国贝尔实验室的物理学家看到电子管在体积、功耗、寿命等方面的局限性,在客观需要的推动下着手固体器件的研究。1948年,贝尔实验室宣布J.巴丁、W.H.布喇顿和W.B.肖克莱研制成晶体三极管。初期的晶体管是点触式的,制造比较困难,稳定性较差,但它毕竟是时代的标志。1957年,贝尔实验室的D.斯帕克斯发明面结型晶体管,克服了点触式晶体管的缺点,使得问世不久的晶体管的地位巩固下来。后来,由于材料工艺方面取得进展,肖克莱早期设想的场效应晶体管也实现了。晶体管的发明将电子学推向了一个新的阶段。电子学在以后取得的许多成就,如集成电路、微处理器和微型计算机等,都是从晶体管发展而来的。集成电路1958年,美国得克萨斯仪器公司宣布一种集成的振荡器问世,首次把晶体管和电阻、电容等集成在一块硅片上,构成了一个基本完整的单片式功能电路。1961年,美国仙童公司宣布制成一种集成的触发器。从此,集成电路获得了飞速的发展。数字集成电路从小规模到中规模、大规模,乃至到超大规模,集成度越来越高,使过去的中小型计算机乃至大型计算机得以微型化,进入了微型计算机的时期。与此同时,模拟集成电路也获得了发展。集成电路的发明开创了集电子器件与某些电子元件于一体的新局面,使传统的电子器件概念发生了变化。这种新型的封装好的器件体积和功耗都很小,具有独立的电路功能,甚至具有系统的功能。单片微波集成电路也已进入生产阶段。集成电路的发明使电子学进入了微电子学时期,是电子学发展的一次重大飞跃。卫星通信1957年,苏联发射人造地球卫星成功,宣告了空间时代的到来。1958年,美国发射低轨道的“斯科尔”卫星成功,这是第一颗用于通信的试验卫星。1962年,美国发射中轨道的通信卫星“电星”-Ⅰ号。1963年,美国把“辛康”-Ⅱ号射入距离地球约35800公里的同步轨道,成为第一颗定点同步通信卫星。1964年,借助定点同步通信卫星首次实现了美、欧、非三大洲的通信和电视转播。1965年,第一颗商用定点同步卫星投入运行。到1969年,大西洋、太平洋和印度洋上空均已有定点同步通信卫星,卫星地球站已遍布世界各国,这些卫星地球站又和本国或本地区的通信网接通。卫星通信经历10年的发展,终趋于成熟。用定点同步通信卫星作为中继站,为洲际信息传递提供了一种稳定而又可靠的手段,也解决了幅员广大的国家的国内通信问题。卫星通信的成功是通信技术,也是电子学的又一次飞跃。光频的开拓和利用电子学发展的一个重要方面,表现在电磁波谱利用的扩展上,其中特别是对光频段(包括红外和紫外)的开拓和利用上。麦克斯韦在他创立的经典电磁理论中,就已经阐明了光的电磁本质。人类对光的认识和利用远在电子学诞生之前。但是,在激光器发明以前,人们所涉及的,主要是非相干光。1954年,美国C.H.汤斯用致冷的氨分子作工作物质,研制成世界上第一台微波激射器。稍后,苏联Н.Г.巴索夫和А.М.普罗霍洛夫也研制成以氟化铯为工作物质的微波激射器。1958年,汤斯与A.L.肖洛将微波受激