初一几何总复习题一、填空题:1.如图所示,(1)直线有_______条;射线有_______条;线段有_______条,它们是_______;(2)直角有_______个,它们是_______;(3)互余的角共有_______对。2.如图,若AB//CE,则∠B=∠_______,根据是_______;若AB//CE,则_______=∠A,根据是_______。3.如图,若AC⊥CD,AB⊥AC,则_______//_______。4.命题是_______语句,一个命题由_______和_______两部分组成。题设成立时,_______的命题叫做假命题,判断一个命题是假命题,只要_______即可。5.如图,直线AB、CD相交于O,OE⊥AB于O,若∠AOC=43°,则∠DOB=_______;∠EOD=_______;∠COB=_______。6.如图所示,直线AB、CD相交于O,∠BOD=60°,若∠1∶∠2=1∶2,则∠2=_______。7.如图,若OA⊥OB,OC⊥OD,∠BOC=60°,则∠AOD=_______。二、选择题:1.在同一平面内,两条相交直线与第三条直线的交点数是()A、1个B、2个C、2或3个D、1或2或3个2.如图,∠1和∠2是对顶角的有()A、0个B、1个C、3个D、5个3.如图,下列判断中错误的个数是()①∠1和∠2是同旁内角;②∠1和∠3是同旁内角;③∠1和∠4是同位角;④∠1和∠5是同位角;⑤∠1和∠6是同旁内角;⑥∠1和∠7是内错角;⑦∠2和∠7是对顶角;⑧∠3和∠5是邻补角;⑨∠4和∠5是同旁内角;⑩∠4和∠6是同旁内角。A、0个B、1个C、2个D、以上都不对4.如图,若∠1=∠2,则下面结论中,正确的是()①AB//CD;②AD//BC;③∠3=∠4;④∠B+∠BCD=180°;⑤∠B+∠BAD=180°;⑥∠D+∠BCD=180°;⑦∠D+∠DAB=180°;⑧∠B=∠5;⑨∠D=∠5。A、①④⑦⑧B、②③⑤⑥C、①②⑦⑨D、①④⑥⑨5.两条平行线被第三条直线所截,则下面结论中()①一对同位角的角平分线互相平行;②一对内错角的角平分线互相平行;③一对同旁内角的角平分线互相平行。A、都不正确B、都正确C、只有一个不正确D、只有一个正确三、按下列要求作图:1.过点P作直线AB的垂线(1)点P在AB外;(2)点P在AB上。2.已知ΔABC,(1)作∠BAC的平分线,交BC于点M;(2)过M点分别作出到AB、AC的垂线段,并测量到AB、AC的距离,并比较两个距离的大小。3.在四边形ABCD中,①取BC中点M;②过M作BC的垂线MN交AD于N。四、解答题:1.计算:(1)一个角与45°角之和的等于65°角的余角,求这个角的度数。(2)一个锐角的余角是它补角度数的,求这个角的度数。(3)如图,∠AOB=90°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数。2.如图,已知:直线AB、CD相交于O。若∠AOC∶∠COB=1∶4,求∠BOD、∠AOD的度数。3.如图,已知:直线AB、CD相交于O,OB平分∠DOE,∠DOE=110°,求∠AOC的度数。4.如图,已知:AD⊥BC于D,EF⊥BC于F,∠1+∠2=180°。求证:∠CGD=∠BAC。5.如图,∠MON=45°,PA//MO,PB//ON,PH⊥ON于H,求∠APH的度数。6.如图,AB//CD,AF⊥CD于F,DE⊥AB于E。连BC,BC交AF于H,交DE于G。求证:∠BGE=∠CHF。7.如图,已知OM平分∠AOB,ON平分∠BOC,且OM⊥ON,求证:A、O、C在一直线上。8.证明:一个角的平分线的反向延长线必平分它的对顶角。9.在四边形ABCD中,是否存在一点O,使得OA+OB+OC+OD的总长最短?如果有,指出点O的位置在哪里,并对你的结论加以证明,如果没有,说明理由。10.如图,AB//CD,BEFGD为折线,试证明:∠B+∠F+∠D=∠E+∠G。几何答案一、填空题:1.(1)0;0;6;AB、AD、AC、BD、DC、BC(2)3;∠BAC、∠BDA、∠ADC(3)42.ECD;两直线平行,同位角相等;∠ACE;两直线平行,内错角相等3.AB;CD4.判断一件事情的;题设;结论;不能保证结论一定成立;举出一个反例5.43°;47°;137°6.40°;7.120°二、选择题:1.D2.B3.C4.A5.C三、1.略2.图略。两个距离相等3.图略。四、解答题:1.(1)130°(2)60°(3)45°2.∠BOD=36°,∠AOD=144°3.55°4.解答略5.45°6.证明:∵AB//CD(已知)∴∠1+∠D=180°,(两直线平行,同旁内角互补)∵DE⊥AB,(已知)∴∠1=90°(垂直定义)∴∠D=90°,(等式性质)∵AF⊥CD(已知)∴∠2=90°(垂直定义)∴∠D+∠2=90°+90°=180°。∴AF//ED(同旁内角互补,两直线平行)∴∠CHF=∠3(两直线平行,同位角相等)∵∠3=∠BGE(对顶角相等)∴∠BGE=∠CHF(等量代换)7.证明:∵OM平分∠AOB,ON平分∠BOC(已知)∴∠AOB=2∠1,∠BOC=2∠2(角平分线定义)∵OM⊥ON(已知)∴∠1+∠2=90°(垂直定义)∴∠AOC=∠AOB+∠BOC=2∠1+2∠2=2(∠1+∠2)=180°,∴A、O、C在一直线上(平角定义)。8.证明:∵直线AB、CD相交于O(已知)∴∠BOD=∠AOC(对顶角相等)又直线MN过O,∴∠1=∠4,∠2=∠3(对顶角相等)∵OM平分∠AOC(已知)∴∠1=∠2(角平分线定义)∴∠3=∠4(等量代换)∴ON平分∠BOD(角平分线定义)9.答:存在这样的点,这个点O是四边形对角线的交点。证明:如图9-1,若存在另一点O′(O′既不在AC上,也不在BD上),连结O′A,O′B,O′C,O′D。于是,在ΔO′AC中,有O′A+O′CAC,.......①在ΔO′BD中,有O′B+O′DBD,................②①+②,得O′A+O′B+O′C+O′DAC+BD=OA+OB+OC+OD;如图9-2,若存在一点O″在AC(或BD)并异于点O的位置上,连结O″B,O″D,于是在ΔO″BD中,有O″B+O″DBD,...........①又点O″在AC,所以有O″A+O″C=AC,.......②①+②,得O″A+O″B+O″C+O″DAC+BD=OA+OB+OC+OD;同理,可证,若点O″在BD上,有相同的结论。综上所述,所得结论正确。10.提示:过E、F、G分别作平行于AB的直线。