西北工业大学《信号与系统》实验报告学院:软件与微电子学院学号:姓名:专业:实验时间:实验地点:软件学院实验室310指导教师:陈勇西北工业大学2017年9月一、实验目的1.了解离散时间全通系统;2.了解离散时间傅里叶变换性质;3.了解MATLAB的模拟电话播音键;4.学会使用MATLAB函数residue;5.了解离散时间系统的部分分式展开。二、实验要求1.运用理论课程所学的离散信号的傅里叶变换的相关知识解决实验中的问题;2.按照题目要求完成相应问题。三、实验设备(环境)(1)计算机;(2)MATLABR2017a;(3)《信号与系统计算机练习:利用MATLAB》(美)巴克著,刘树棠译,西安交通大学出版,2000.6;四、实验内容与步骤5.1计算DTFT的样本基本题(a)(b)(c)(d)(e)5.2电话拨号音基本题(a)(b)(c)5.3离散时间全通系统基本题(a)(b)5.4频率采样:基于DTFT的滤波器设计基本题(a)(b)(c)5.5系统辨识基本题(a)(b)(c)(d)5.6离散时间系统的部分分式展开基本题(a)(b)(c)(d)五、实验结果5.1计算DTFT的样本(a)由题意可得:X(jω)=∑𝑥[𝑛]𝑒−𝑗𝜔𝑛+∞𝑛=−∞=∑(𝑢[𝑛]−𝑢[𝑛−10])𝑒−𝑗𝜔𝑛+∞𝑛=−∞=∑𝑒−𝑗𝜔𝑛9𝑛=0=1−𝑒−10𝑗𝜔1−𝑒−𝑗𝜔包含x[n]非零样本的向量x为x=[ones(1,10)]。(b)x=[ones(1,10)];k=[0:99];w=2*pi*k/100;X=(1-exp(-j*10*2*pi*k/100))./(1-exp(-j*2*pi*k/100));subplot(2,1,1);plot(w,abs(X));xlabel('频率');ylabel('幅值');subplot(2,1,2);plot(w,angle(X));xlabel('幅值');ylabel('相位');(c)代码如下:图像如下:图与(b)中的结果相比较,是将(b)中的图k≥N/2的样本从π≤ω2π移动到−π≤ω0的区间上构成的。(d)因为x[n]=u[n]-u[n-10],所以x[n+5]=u[n+5]-u[n-5];则Xr(jω)=∑𝑥[𝑛]𝑒−𝑗𝜔𝑛+∞𝑛=−∞=∑(𝑢[𝑛+5]−𝑢[𝑛−5])𝑒−𝑗𝜔𝑛+∞𝑛=−∞=∑𝑒−𝑗𝜔𝑛4𝑛=−5=𝑒5𝑗𝜔−𝑒−5𝑗𝜔1−𝑒−𝑗𝜔;显然Xr(jω)=X(jω)𝑒5𝑗𝜔。画Xr对于w的图代码如下:图像如下:验证代码如下:验证图像如下:综上x[n+5]的DTFT的求法正确(e)z=[123454321];k=[0:99];w=2*pi*k/100;w=w-pi;Z=fftshift(fft(z,100));plot(w,real(Z));xlabel('w');ylabel('Z(jw)');5.2电话拨号音(a)创建d0到d9的代码如下:n=[0:999];d0=sin(0.7217*n)+sin(1.0247*n);d1=sin(0.5346*n)+sin(0.9273*n);d2=sin(0.5346*n)+sin(1.0247*n);d3=sin(0.5346*n)+sin(1.1328*n);d4=sin(0.5906*n)+sin(0.9273*n);d5=sin(0.5906*n)+sin(1.0247*n);d6=sin(0.5906*n)+sin(1.1328*n);d7=sin(0.6535*n)+sin(0.9273*n);d8=sin(0.6535*n)+sin(1.0247*n);d9=sin(0.6535*n)+sin(1.1328*n);sound(d0,8192);sound(d1,8192);sound(d2,8192);sound(d3,8192);sound(d4,8192);sound(d5,8192);sound(d6,8192);sound(d7,8192);sound(d8,8192);sound(d9,8192);(b)代码如下:图像如下:(c)space=[zeros(1,1000)];phone=[d8spaced5spaced7spaced6spaced4spaced0spaced2spaced8];sound(phone,8192);听到的声音与电话机上的一致。5.3离散时间全通系统(a)a1=[1];b1=[0001];freqz(b1,a1,1000);(b)a2=[1-3/4];b2=[-3/41];freqz(b2,a2,1000);显然𝐻1(𝑒𝑗𝜔)和𝐻2(𝑒𝑗𝜔)的相位不同,当两个系统的输入相同时,显然输出不同。因为系统一相位为线性的,即系统对输入信号仅做了一个时移;而系统二的相位不是线性的,显然得到的输出不同。5.4频率采样:基于DTFT的滤波器设计(a)绘图代码如下:图像如下:(b)k=[0:8];w=2*pi*k/9;Hm=[111000011];plot(w,Hm);xlabel('w');ylabel('Hm(exp(jw))');不太像一个底通滤波。(c)因果滤波器h[n]的相位是-(N-1)/2。它与零相位滤波器的关系就是延迟(N-1)/2个样本。5.5系统辨识(a)代码如下:显示的图像为:在题设限定范围外,信号x[n]与y[n]的值基本为0,所以可以放心截断。(b)代码如下:w=2*pi*n/64;X=fft(x,64);Y=fft(y,64);subplot(2,1,1);plot(w,abs(X));xlabel('频率');ylabel('X幅值');subplot(2,1,2);plot(w,abs(Y));xlabel('频率');ylabel('Y幅值');显示的图形为:(c)计算H(exp(jw))和用ifft计算h[n]的代码如下:H=Y./X;h=ifft(H,64);stem(n,h);title('h[n]的图像');图像如下:(d)绘图代码如下:图像如下:所以两种方法得到的单位脉冲响应完全相同,可知(c)所得h[n]计算正确。5.6离散时间系统的部分分式展开基本题(a):代码如下:基本题(b):解析法求频率响应如下:创建num与den如下:基本题(c):确定部分展开式的代码如下:部分展开式为:所以单位脉冲响应为H(exp(jw))=-2/(exp(-jw)-3)+1/(exp(-jw)-2)=,所以单位脉冲响应为h[n]=(2/3)*((1/3)^n)*u[n]-(1/2)*((1/2)^n)*u[n]。基本题(d):绘图代码如下:图像如下:由图像可知,(c)中求得的解析表达式正确。六、实验分析与讨论1.学会了系统辨识;2.了解了离散时间全通系统;3.学会了使用sound函数模拟电话播音键;4.学会了基于DTFT的滤波器设计;教师评语:签名:日期:成绩: