1、过一点可以作几条直线?2、过几点可确定一条直线?●A●A●B3.4确定圆的条件确定圆的条件类比确定直线的条件:经过一点可以作几条直线?经过两点只能作一条直线.●A●A●B确定圆的条件想一想,经过一点可以作几个圆?经过两点,三点,…,呢?猜一猜1.作圆,使它过已知点A.你能作出几个这样的圆?●O●A●O●O●O●O2.作圆,使它过已知点A,B.你能作出几个这样的圆?●A●B●O●O●O●O确定圆的条件2.过已知点A,B作圆,可以作无数个圆.读一读经过两点A,B的圆的圆心在线段AB的垂直平分线上.以线段AB的垂直平分线上的任意一点为圆心,这点到A或B的距离为半径作圆.你是如何作圆?其圆心的分布有什么特点?与线AB有什么关系?●A●B●O●O●O●O确定圆的条件3.作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上),你能作出几个这样的圆?想一想老师提示:能否转化为2的情况:经过两点A,B的圆的圆心在线段AB的垂直平分线上.你准备如何(确定圆心,半径)作圆?其圆心的位置有什么特点?与A,B,C有什么关系?●B●C┏●A●O确定圆的条件请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上).以O为圆心,OA(或OB,或OC)为半径,作⊙O即可.想一想请你证明你做得圆符合要求.●B●C●A●O证明:∵点O在AB的垂直平分线上,∴⊙O就是所求作的圆,ED┏GF∴OA=OB.同理,OB=OC.∴OA=OB=OC.∴点A,B,C在以O为圆心的圆上.这样的圆可以作出几个?为什么?.ABC过如下三点能不能做圆?为什么?在同一直线上的三点不能作圆三点定圆定理不在同一条直线上的三个点确定一个圆.议一议驶向胜利的彼岸老师期望:将这个结论及其证明作为一种模型对待.●B●C●A●OED┏GF三角形与圆的位置关系因此,三角形的三个顶点确定一个圆,这圆叫做三角形的外接圆.这个三角形叫做圆的内接三角形.做一做外接圆的圆心叫做三角形的外心.●OABC外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等。三角形与圆的位置关系随堂练习锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABC●OABCCAB┐●O●O某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?●●●BAC某市要建一个圆形公园,要求公园刚好把动物园A,植物园B和人工湖C包括在内,又要使这个圆形的面积最小,请你给出这个公园的施工图。(A、B、C不在同一直线上)植物园动物园人工湖图中工具的CD边所在直线恰好垂直平分AB边,怎样用这个工具找出一个圆的圆心。CABD·圆心现在你知道了怎样要将一个如图所示的破损的圆盘复原了吗?方法:1、在圆弧上任取三点A、B、C。2、作线段AB、BC的垂直平分线,其交点O即为圆心。3、以点O为圆心,OC长为半径作圆。⊙O即为所求。ABCO经过不在同一直线上的4个点是否一定能作一个圆?试一试.四边形与圆的位置关系如果四边形的四个顶点在一个圆,这圆叫做四边形的外接圆.这个四边形叫做圆的内接四边形.读一读9我们可以证明圆内接四边的两个重要性质:1.圆内接四边形对角互补.2.圆内接四边形对的一个外角等于它的内对角.3.对角互补的四边形内接于圆.●OABCDD如图:圆内接四边形ABCD中,∵∠BAD等于弧BCD所对圆心角的一半,∠BCD等于弧BAD所对圆心角的一半.而弧BCD所对的圆心角+弧BAD所对的圆心角=360°,∴∠BAD+∠BCD=180°.同理∠ABC+∠ADC=180°.圆内接四边形的对角互补.四边形与圆的位置关系COBA读一读10如果延长BC到E,那么∠DCE+∠BCD=180°.∴∠A=∠DCE.又∵∠A+∠BCD=180°,CODBAE读一读11四边形与圆的位置关系因为∠A是与∠DCE相邻的内角∠DCB的对角,我们把∠A叫做∠DCE的内对角.圆内接四边形的一个外角等于它的内对角.结束寄语•盛年不重来,一日难再晨,及时宜自勉,岁月不待人.下课了!