MathForMiddleSchool新坐标教育Copyright©AlexchouTEL:18971569759第1页共6页第二章整式的加减----整式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。二、典型例题例1.若多项式xyxxxmx537852222的值与x无关,求mmmm45222的值.分析:多项式的值与x无关,即含x的项系数均为零因为83825378522222yxmxyxxxmx所以m=4将m=4代人,44161644452222mmmmmm利用“整体思想”求代数式的值例2.x=-2时,代数式635cxbxax的值为8,求当x=2时,代数式635cxbxax的值。分析:因为8635cxbxax当x=-2时,8622235cba得到8622235cba,所以146822235cba当x=2时,635cxbxax=206)14(622235cba学生姓名罗杨楚萱年级七年级上课时间11月02日教学目标整式加减-多项式化简求值教学重难点多项式的定义、多项式的化简MathForMiddleSchool新坐标教育Copyright©AlexchouTEL:18971569759第2页共6页2008200712007200720072222323aaaaaaa20082007120072007220072)1(200722007222222223aaaaaaaaaaaaa例3.当代数式532xx的值为7时,求代数式2932xx的值.分析:观察两个代数式的系数由7532xx得232xx,利用方程同解原理,得6932xx整体代人,42932xx代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。例4.已知012aa,求2007223aa的值.分析:解法一(整体代人):由012aa得023aaa所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。由012aa,得aa12,所以:解法三(降次、消元):12aa(消元、、减项)20082007120072007)(20072007222222323aaaaaaaaaaaMathForMiddleSchool新坐标教育Copyright©AlexchouTEL:18971569759第3页共6页例5.(实际应用)A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A公司,年薪一万元,每年加工龄工资200元;B公司,半年薪五千元,每半年加工龄工资50元。从收入的角度考虑,选择哪家公司有利?分析:分别列出第一年、第二年、第n年的实际收入(元)第一年:A公司10000;B公司5000+5050=10050第二年:A公司10200;B公司5100+5150=10250第n年:A公司10000+200(n-1);B公司:[5000+100(n-1)]+[5000+100(n-1)+50]=10050+200(n-1)由上可以看出B公司的年收入永远比A公司多50元,如不细心考察很可能选错。例6.三个数a、b、c的积为负数,和为正数,且bcbcacacababccbbaax,则123cxbxax的值是_______。解:因为abc0,所以a、b、c中只有一个是负数,或三个都是负数又因为a+b+c0,所以a、b、c中只有一个是负数。不妨设a0,b0,c0则ab0,ac0,bc0所以x=-1+1+1-1-1+1=0将x=0代入要求的代数式,得到结果为1。同理,当b0,c0时,x=0。另:观察代数式bcbcacacababccbbaa,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再讨论。有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质。规律探索问题:例7.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上,“2008”在射线___________上.(2)若n为正整数,则射线OA上数字的排列规律可以用含n的代数式表示为__________________________.分析:OA上排列的数为:1,7,13,19,…观察得出,这列数的后一项总比前一项多6,归纳得到,这列数可以表示为6n-5因为17=3×6-1,所以17在射线OE上。因为2008=334×6+4=335×6-2,所以2008在射线OD上ABDCEFO172839410511612MathForMiddleSchool新坐标教育Copyright©AlexchouTEL:18971569759第4页共6页例8.将正奇数按下表排成5列:第一列第二列第三列第四列第五列第一行1357第二行1513119第三行17192123第四行31292725根据上面规律,2007应在A.125行,3列B.125行,2列C.251行,2列D.251行,5列分析:观察第二、三、四列的数的排列规律,发现第三列数规律容易寻找第三列数:3,11,19,27,规律为8n-5因为2007=250×8+7=251×8-1所以,2007应该出现在第一列或第五列又因为第251行的排列规律是奇数行,数是从第二列开始从小到大排列,所以2007应该在第251行第5列例9.(2006年嘉兴市)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为kn2(其中k是使kn2为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是__________.分析:问题的难点和解题关键是真正理解“F”的第二种运算,即当n为偶数时,结果为kn2(其中k是使kn2为奇数的正整数),要使所得的商为奇数,这个运算才能结束。449奇数,经过“F①”变为1352;1352是偶数,经过“F②”变为169,169是奇数,经过“F①”变为512,512是偶数,经过“F②”变为1,1是奇数,经过“F①”变为8,8是偶数,经过“F②”变为1,我们发现之后的规律了,经过多次运算,它的结果将出现1、8的交替循环。再看运算的次数是449,奇数次。因为第四次运算后都是奇数次运算得到8,偶数次运算得到1,所以,结果是8。三、小结用字母代数实现了我们对数认识的又一次飞跃。希望同学们能体会用字母代替数后思维的扩展,体会一些简单的数学模型。体会由特殊到一般,再由一般到特殊的重要方法。26134411第一次F②第二次F①第三次F②…MathForMiddleSchool新坐标教育Copyright©AlexchouTEL:18971569759第5页共6页作业:1、先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.(4)(3a2-ab+7)-(5ab-4a2+7),其中a=2,b=13;(5)12x-2(x-13y2)+3(-12x+19y2),其中x=-2,y=-23;(6)-5abc-{2a2b-[3abc-2(2ab2-12a2b)]},其中a=-2,b=-1,c=3.2、关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.3、证明多项式16+a-{8a-[a-9-3(1-2a)]}的值与字母a的取值无关.4、由于看错了符号,某学生把一个多项式减去x2+6x-6误当成了加法计算,结果得到2x2-2x+3,正确的结果应该是多少?MathForMiddleSchool新坐标教育Copyright©AlexchouTEL:18971569759第6页共6页5、当12,2xy时,求代数式22112xxyy的值。6、已知x是最大的负整数,y是绝对值最小的有理数,求代数式322325315xxyxyy的值。7、已知3613211x,求代数式1199719981999xxxx的值。8、已知25abab,求代数式2232abababab的值。9、当7x时,代数式53bxax的值为7;当7x时,代数式35axbx的值为多少?10、已知当5x时,代数式52bxax的值是10,求5x时,代数式52bxax的值。