知识决定命运百度提升自我本文为自本人珍藏版权所有仅供参考本文为自本人珍藏版权所有仅供参考2007年中考试题分类汇编(方案设计)一、图案设计1、(2007四川乐山)认真观察图(10.1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图(10.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;等··················································································6分(2)满足条件的图形有很多,只要画正确一个,都可以得满分.·······················9分2、(2007福建福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.解:以下为不同情形下的部分正确画法,答案不唯一.(满分8分)图(10.1)图(10.2)①②③④⑤知识决定命运百度提升自我3、(2007哈尔滨)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3).分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.解:图1矩形(非正方形)图2正方形图3有一个角是135°的三角形图1矩形(非正方形)图2正方形图3有一个角是135°的三角形(第3题图)知识决定命运百度提升自我二、代数式中的方案设计4、(2007辽宁大连)某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元。若2元的奖品购买a件。(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由。三、解直角三角形中的方案设计5、(2007湖北潜江)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得68ACB.(1)求所测之处江的宽度(.48.268tan,37.068cos,93.068sin);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.ACB图①图②知识决定命运百度提升自我解:(1)在BACRt中,68ACB,∴24848.210068tanACAB(米)答:所测之处江的宽度约为248米……………………………………………………(3分)(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分.四、统计知识中的方案设计6、(2007江西)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1所有评委所给分的平均数.方案2在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3所有评委所给分的中位数.方案4所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710;··············1分方案2最后得分:1(7.07.83838.4)88;·············································2分方案3最后得分:8;·····················································································3分方案4最后得分:8或8.4.·············································································4分(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.····························································6分因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.五、方程、函数中的方案设计7、(2007山东济宁)某小区有一长100m,宽80cm的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m。预计活动区每平方米造价60元,绿化区每平方米造价50元。(1)设一块绿化区的长边为xm,写出工程总造价y与x的函数关系式(写出x的取值范围);(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x为整数的所有工程方案;若不能,请说明理由。(参考值:732.13)3.27.07.888.49.8123分数人数(第22题图)知识决定命运百度提升自我8、(2007广东梅州)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.解:(1)1533(h)45604(分钟),4542,不能在限定时间内到达考场.··································································4分(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.·······························································5分先将4人用车送到考场所需时间为150.25(h)1560(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为151.2513.75(km)·············································································································7分设汽车返回(h)t后先步行的4人相遇,56013.75tt,解得2.7513t.汽车由相遇点再去考场所需时间也是2.75h13.················································9分所以用这一方案送这8人到考场共需2.751526040.44213.所以这8个个能在截止进考场的时刻前赶到.··············································10分方案2:8人同时出发,4人步行,先将4人用车送到离出发点kmx的A处,然后这4个人知识决定命运百度提升自我步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场.···············6分由A处步行前考场需15(h)5x,汽车从出发点到A处需(h)60x先步行的4人走了5(km)60x,设汽车返回t(h)后与先步行的4人相遇,则有605560xttx,解得11780xt,·············································································································8分所以相遇点与考场的距离为112156015(km)78013xxx.由相遇点坐车到考场需1(h)4390x.所以先步行的4人到考场的总时间为111(h)607804390xxx,先坐车的4人到考场的总时间为15(h)605xx,他们同时到达,则有11115607804390605xxxxx,解得13x.将13x代入上式,可得他们赶到考场所需时间为1326037605(分钟).3742.他们能在截止进考场的时刻前到达考场六、不等式中的方案设计9、(2007山东青岛)某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?解:⑴设生产A种饮料x瓶,根据题意得:解这个不等式组,得20≤x≤40.因为其中正整数解共有21个,所以符合题意的生产方案有21种.原料名称饮料名称甲乙A20克40克B30克20克2030(100)28004020(100)2800xxxx,.≤≤知识决定命运百度提升自我⑵根据题意,得y=2.6x+2.8(100-x).整理,得y=-0.2x+280.∵k=-0.2<0,∴y随x的增大而减小.∴当x=40时成本总额最低.10、(2007重庆)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售。按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。根据下表提供的信息,解答以下问题:脐橙品种ABC每辆汽车运载量(吨)654每吨脐橙获得(百元)121610(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为yx20,则有:10020456yxyx整理得:202xy