氧化物碳纳米复合材料的制备及锂电性能研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

氧化物/碳纳米复合材料的制备及锂电性能研究Investigationsonsynthesisandlithiumperformanceofoxide/carbonnanocompositematerials学科专业:材料学研究生:常美艳指导教师:侯峰副教授天津大学材料学院二零一二年十二月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。同意学校向国家有关部门或机构送交论文的复印件和磁盘。(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日摘要随着移动数码产品及电动汽车的普及和发展,石墨负极材料很难满足现代对锂离子电池高能量密度的要求。氧化锡、氧化硅锂电负极材料因具有较高的理论容量,受到人们越来越多的研究。本论文采用液相还原法制备SnO2、SnO2/GNS、SnO2/CNTs及SnO2/R-GO/CNTs,采用气相法制备CNTs和SnO2/CNTs。以NaBH4为还原剂,SnCl4为锡源,溶液还原法制备R-SnO2、SnO2/R-GO及SnO2/R-GO/CNTs。锂电性能显示,电流密度为50mA/g时,可逆容量分别为461mAh/g、574.3mAh/g、494.4mAh/g,SnO2/R-GO和SnO2/R-GO/CNTs的锂电性能相对于R-SnO2都有一定的提高。采用层层复合法制备得到微观结构均匀的SnO2/GNS、SnO2/CNTs复合材料。测试结果显示电流密度为50mA/g时,可逆放电容量为491.3mAh/g、501.9mAh/g,对比可知复合材料的锂电性能优于R-SnO2。采用化学气相热解原位制备得到SiO2/CNTs复合材料并研究其锂电性能。SiO2/CNTs微观形貌为混合型和包裹型。锂电性能测试显示,电流密度为50mA/g时,可逆容量为575.4mAh/g。此外考察了注入点温度和注入方式对产物形貌的影响。注入点温度升高为400℃时,产物趋向于分区。管首管尾双向注入时,产物为SiO2/CNTs同轴纤维。以甲醇为添加剂,在氩气和无载气条件下均连续制备得到碳纳米管膜。碳纳米管直径约为3-5nm,细直碳纳米管互相交错形成网状,在交错的“节”处堆积有少量竹节状碳纳米管。此外,以柠檬酸为络合剂溶液法制备得SnO2,并测试其锂电性能;以NaOH为矿化剂,水热法制备SnO2,同时考察了不同分子质量(1000、2000、4000)的聚乙二醇(PEG)对生成SnO2形貌的影响。关键词:氧化锡;氧化硅;碳纳米管;石墨烯;锂电负极材料ABSTRACTWiththepopularityofportabledigitalequipmentsandrapiddevelopmentofelectricvehicles,thelithiumionbatterieswithgraphiteasanodematerialhardlymeetthedemandonhighenergydensity.SnO2basedandSiO2basedanodematerialswithhighertheoreticalcapacitiesattractedmuchattention.Inthisthesis,wesynthesizedSnO2,SnO2/GNS,SnO2/CNTsandSnO2/R-GO/CNTsviasolutionreductionmethodandSiO2/CNTsbyone-stepchemicalvapordepositionmethod.R-SnO2,SnO2/R-GOandSnO2/R-GO/CNTswerepreparedbysolutionreductionmethodwithNaBH4asreducingagentandSnCl4astinsource.Thelithiumperformancecurvesshowedthatwhencurrentdensitywas50mA/g,thereversiblecapacitiesofR-SnO2,SnO2/R-GOandSnO2/R-GO/CNTswere461mAh/g,574.3mAh/gand494.4mAh/grespectively.ThelithiumperformanceofthecompositeshadbeenimprovedcomparedwithR-SnO2.Basedonthelayerbylayertechnique,wepreparedSnO2/GNS,SnO2/CNTscompositematerialwithuniformmicrostructure.Thetestingresultsshowedthatreversibledischargecapacitywas491.3mAh/g,501.9mAh/gforLBL-SnO2/GNSandLBL-SnO2/CNTsrespectivelywhencurrentdensitywas50mA/g.LithiumperformanceofthecompositematerialswerebetterthanthatofR-SnO2.SiO2/CNTswaspreparedbyin-situchemicalvaporpyrolysismethodanditslithiumelectricalperformancewasinvestigated.ThemicrostructureofSiO2/CNTscanbedevidedintotwotypes:hybridstructureandcoatedstructure.Thereversiblecapacitywas575.4mAh/gwhencurrentdensitywas50mA/g.Theinfluenceofinjectionpointtemperatureandinjectionmodeonmorphologyofthecompositewasalsostudied.Theproducttendedtobelocatedatdifferentpointifinjectionpointtemperatureincreasedto400℃.SiO2/CNTscoaxialfiberswereobtainedwhenthepersurorandSisourcewereinjectedfromtube-headandtube-endrespectively.CarbonnanotubefilmscanbecontinuouspreparedbyCVDinargonorwithoutgaswithmethanolasadditive.Thediameterofcarbonnanotubeswasabout3-5nm.Fineandstraightcarbonnanotubesinterweavedanetwithfewsmallbamboo-likecarbonnanotubesinjointpart.Inaddition,citricacidascomplexingagentwasusedtoprepareSnO2viasolutionmethodanditslithiumperformancewasdiscussed.WithNaOHasmineralizer,SnO2wasobtainedbyhydrothermalmethodandtheeffectofdifferentmolecularweightofPEGonmorphologyofSnO2wasinvestigated.KEYWORDS:SnO2;SiO2;Carbonnanotubes;Graphene;LithiumionbatteryanodematerialI目录第一章绪论................................................................................................................11.1前言...................................................................................................................11.2锂离子电池.......................................................................................................11.2.1锂离子电池工作原理............................................................................21.2.2锂离子电池特点....................................................................................21.2.3锂离子电池组成....................................................................................31.3锂离子电池负极材料.......................................................................................31.3.1锂离子电池负极材料要求....................................................................31.3.2常见锂离子电池负极材料....................................................................31.4氧化锡基锂离子电池负极材料.......................................................................51.4.1SnO2锂电负极材料的研究现状...........................................................61.4.2SnO2/CNTs锂电负极材料研究现状....................................................81.4.3SnO2/GNS锂电负极材料的研究现状................................................101.5SiO2基锂离子电池负极材料.........................................................................131.5.1SiO2锂电负极材料的研究现状..........................................................131.5.2SiO2/碳复合锂电负极材料的发展状况.............................................141.6本课题的研究意义及创新点.............................

1 / 75
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功