对概率论与数理统计的认识

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1对概率论与数理统计的认识院系数学与信息工程系专业数学与应用数学姓名刘建丽2对概率论与数理统计的认识摘要概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。这是当前课程改革的大势所趋。加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。关键字:概率论实践解决问题一,学科历史三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大。17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。数学家们“参与”赌博。参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。1713年,雅可布的著作《猜度术》出版。遗憾的是在他的大作问世之时,雅可布已谢世8年之久。雅可布的侄子尼古拉·贝努利也真正地参与了“赌博”。他3提出了著名的“圣彼得堡问题”:甲乙两人赌博,甲掷一枚硬币到掷出正面为一局。若甲掷一次出现正面,则乙付给甲一个卢布;若甲第一次掷得反面,第二次掷得正面,乙付给甲2个卢布;若甲前两次掷得反面,第三次得到正面,乙付给甲22个卢布。一般地,若甲前n-1次掷得反面,第n次掷得正面,则乙需付给甲2n-1个卢布。问在赌博开始前甲应付给乙多少卢布才有权参加赌博而不致亏损乙方?尼古拉同时代的许多数学家研究了这个问题,并给出了一些不同的解法。但其结果是很奇特的,所付的款数竟为无限大。即不管甲事先拿出多少钱给乙,只要赌博不断地进行,乙肯定是要赔钱的。随着18、19世纪科学的发展,人们注意到某些生物、物理和社会现象与机会游戏相似,从而由机会游戏起源的概率论被应用到这些领域中,同时也大大推动了概率论本身的发展。法国数学家拉普拉斯将古典概率论向近代概率论进行推进,他首先明确给出了概率的古典定义,并在概率论中引入了更有力的数学分析工具,将概率论推向一个新的发展阶段。他还证明了“煤莫弗——拉普拉斯定理”,把橡莫弗的结论推广到一般场合,还建立了观测误差理论和最小二乘法。拉普拉斯于1812年出版了他的著作《分析的概率理论》,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值。是否能有更大的发展成为严谨的学科。概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。如何把概率论建立在严格的逻辑基础上,这是从概率诞生时起人们就关注的问题,这些年来,好多数学家进行过尝试,终因条件不成熟,一直拖了三百年才得以解决。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础。现在,概率论与以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用。直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普查及教育等同概率论与数理统计也是密不可分的。根据概率论中用投针试验估计π值的思想产生的蒙特卡罗方法,是一种建立在概率论与数理统计基础上的计算方法。借助于电子计算机这一工具,使这种方法在核物理、表面物理、电子学、生物学、高分子化学等学科的研究中重要的作用。概率论作为理论严谨,应用广泛的数学分支正展。二,怎样学“概率论与数理统计”概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[其中数学一占20%,数学三占25%,数学四占25%(概率论)].由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的.首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多,中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点.高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题,它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些4技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.。.三,学习“概率论”要注意的要点1.在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画.此外若对一切实数集合B,知道P(X∈B).那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B).就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.2.在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂.3.搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握.3.概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.5这样往往能“事半功倍”.四,价值与实际应用概率统计理论与方法的应用几乎遍及所有科学技术领域、工农业生产和国民经济的各个部门中.例如:1.气象、水文、地震预报、人口控制及预测都与概率论紧密相关;2.产品的抽样验收,新研制的药品能否在临床中应用,均需要用到假设检验;3.寻求最佳生产方案要进行实验设计和数据处理;4.电子系统的设计,火箭卫星的研制与发射都离不开可靠性估计;5.处理通信问题,需要研究信息论6.探讨太阳黑子的变化规律时,时间序列分析方法非常有用;7.研究化学反应的时变率,要以马尔可夫过程来描述

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功