无机化学经典知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

元素化学通论一,含氧酸强度1,R-O-H规则:含氧酸在水溶液中的强度决定于酸分子中质子转移倾向的强弱,质子转移倾向越大,酸性越强,反之则越弱。而质子转移倾向的难易程度,又取决于酸分子中R吸引羟基氧原子的电子的能力,当R的半径较小,电负性越大,氧化数越高时,R吸引羟基氧原子的能力强,能够有效的降低氧原子上的电子密度,使O-H键变弱,容易放出质子,表现出较强的酸性,这一经验规律称为R-O-H规律。1)同一周期,同种类型的含氧酸(如HnRO4),其酸性自左向右依次增强。如:HClO4H2SO4H3PO4H4SiO42)同一族中同种类型的含氧酸,其酸性自上而下依次减弱。如:HClOHBrOHIO3)同一元素不同氧化态的含氧酸,高氧化态含氧酸的酸性较强,低氧化态含氧酸的酸性较弱。如:HClO4HClO3HClO2HClO2,Pauling规则:含氧酸的通式是ROn(OH)m,n为非氢键合的氧原子数(非羟基氧),n值越大酸性越强,并根据n值把含氧酸分为弱酸(n=0),中强酸(n=1),强酸(n=2),极强酸(n=3)四类。因为酸分子中非羟基氧原子数越大,表示分子中R→O配键越多,R的还原性越强,多羟基中氧原子的电子吸引作用越大,使氧原子上的电子密度减小的越多,O-H键越弱,酸性也就越强。注意:应用此规则时,只能使用结构式判断,而不能使用最简式。3,含氧酸脱水“缩合”后,酸分子内的非氢键合的氧原子数会增加,导致其酸性增强,多酸的酸性比原来的酸性强。二,含氧酸稳定性1,同一元素的含氧酸,高氧化态的酸比低氧化态的酸稳定。如:HClO4HClO3HClO2HClO2,氧化还原性:1)同一周期主族元素和过渡元素最高价含氧酸氧化性随原子序数递增而增强。如:H4SiO4H3PO4H2SO4HClO4,V2O5Cr2O72-MnO4-2)相应价态,同一周期的主族元素的含氧酸氧化性大于副族元素。如:BrO4-MnO4-,SeO42-Cr2O72-3)同一元素不同氧化态的含氧酸中,低氧化态的氧化性较强。如:HClOHClO24)同一主族中,各元素的最高氧化态含氧酸的氧化性,大多随原子序数增加呈锯齿形升高,如:HNO3H3PO4H3AsO4H2SO4H2SeO4H6TeO6,HClO4HBrO4H5IO6;低氧化态则自上而下有规律递减:HClOHBrOHIO5)浓酸的含氧酸氧化性比稀酸强,含氧酸的氧化性一般比相应盐的氧化性强,同一种含氧酸盐在酸性介质中比在碱性介质中氧化性强。3,影响含氧酸(盐)氧化能力的因素:1)中心原子结合电子的能力:若中心原子半径小,电负性大,获得电子的能力强,其含氧酸(盐)的氧化性也就强,反之,氧化性则弱。同一周期的元素,自左往右,电负性增大,半径减小,所以它们的最高氧化态含氧酸的氧化性依次递增。同一族元素,从上至下,电负性减小,原子半径增大,所以低氧化态含氧酸(盐)的氧化性依次递减。高氧化态氧化性锯齿形变化则是由于次级周期性引起的。2)含氧酸分子的稳定性:含氧酸的氧化态和分子的稳定性有关,一般来说,如果含氧酸分子中的中心原子R多变价,分子又不稳定,其氧化性越强。稳定的多变价元素的含氧酸氧化性很弱,甚至没有氧化性。低氧化态含氧酸氧化性强还和它的酸性弱有关,因为在弱酸分子中存在着带正电性的氢原子,对酸分子中的R原子有反极化作用,使R-O键易于断裂。同理可以解释:①为什么浓酸的氧化性比稀酸强?因为在浓酸溶液中存在着自由的酸分子,有反极化作用。②为什么含氧酸的氧化性比含氧酸盐强?因为含氧酸盐中Mn+反极化作用比H+弱,含氧酸盐比含氧酸稳定。三,含氧酸盐的热稳定性规律1,同一盐及其酸稳定性次序是:正盐酸式盐酸。如:Na2CO3NaHCO3H2CO32,同一酸根不同金属的含氧酸盐,热稳定性次序是:碱金属碱土金属过渡金属铵盐。如:K2CO3CaCO3ZnCO3(NH4)2CO33,同一酸根同族金属离子盐,热稳定性从上到下一次递增。如:BeCO3MgCO3CaCO3SrCO3BaCO34,同一成酸元素其高氧化态含氧酸盐比低价态稳定。如:KClO4KClO3KClO2KClO5,不同价态的同一金属离子的含氧酸盐,其低价态比高价态稳定。如:Hg2(NO3)2Hg(NO3)26,酸不稳定,其盐也不稳定,酸越稳定,其盐也较稳定。碳酸盐,硝酸盐,亚硫酸盐,卤酸盐的稳定性都较差,较易分解;硫酸盐,磷酸盐较稳定,其酸也较稳定,难分解。这是由于金属离子的反极化作用越大,该盐的热稳定性就越差。如:分解温度Na3PO4Na2SO4Na2CO3NaNO3四,p区元素的次级周期性次级周期性是指元素周期表中,每族元素的物理化学性质,从上向下并非单调的直线式递变,而是呈现起伏的“锯齿形”变化,对于p区元素,主要是指第二,第四,第六周期元素的正氧化态,尤其是最高氧化态的化合物所表现的特殊性。1,第二周期p区元素的特殊性1)N、O、F的含氢化合物容易形成氢键,离子性较强。2)它们的最高配位数为4,而第3周期和以后几个周期的元素可以超过4。3)多数有生成重键的特性。与同族元素相比,除稀有气体外,B、C、N、O、F内层电子少,只有1s2,原子半径特别小(同一族中,从第二周期到第三周期原子半径增加幅度最大),价轨道没有d轨道等特点,所以第二周期元素的电子亲和能(EA)反常地比第三周期同族元素的小。在形成化合键时,在键型、键数和键能等方面也有不同于同族元素的特殊性,影响到这些元素的单质和化合物的结构和性质。2,第四周期p区元素的不规则性最突出的反常性质是最高氧化态化合物(如氧化物,含氧酸及其盐)的稳定性小,而氧化性则很强。第四周期p区元素,经过d区长周期中的元素,此外成增加了10个d电子,次外层结构是3s23p63d10,由于d电子屏蔽核电荷能力比同层的s、p电子的要小,这就使从Ga→Br,最外层电子感受到有效核电荷Z*比不插入10个d电子时要大,导致这些元素的原子半径和第三周期同族元素相比,增加幅度不大。由原子半径引起的这些元素的金属性(非金属性)、电负性、氢氧化物酸碱性、最高氧化态含氧酸(盐)的氧化性等性质都出现反常现象,即所谓“不规则性”。最突出反常性质是这些元素最高氧化态化合物(如氯化物、含氧酸及其盐)的稳定性小,而氧化性则很强。如ⅦA高溴酸(盐)氧化性比高氯酸(盐)、高碘酸(盐)强得多。ⅥAH2SeO4的氧化性比H2SO4(稀)强,中等浓度的H2SeO4就能氧化Cl-→Cl2,而浓H2SO4和NaCl反应→HCl;ⅤAH2AsO4有氧化性,在酸性介质中能将I-氧化为I2,而H3PO4基本上没有氧化性,浓H3PO4和I-反应只生成HI。导致第四周期p区元素性质不规则性的本质因素是因为第三周期过渡到第四周期,次外层电子从2s22p6变为3s23p63d10,第一次出现了d电子,导致有效核电荷Z*增加得多,使最外层的4s电子能级变低,比较稳定。3,p区金属6S2电子的稳定性周期表中p区下方的金属元素,即第六周期的Tl,Pb,Bi,Po在化合物中的特征氧化态应依次为+Ⅲ,+Ⅳ,+Ⅴ和+Ⅵ,但这四种元素的氧化态表现反常,它们的低氧化态化合物,既Tl(Ⅰ),Pb(Ⅱ),Bi(Ⅲ),Po(Ⅳ)的化合物最稳定。长期以来,学者们认为这是由于这四种元素存在6S2惰性电子对之故,这种现象为西奇威克最先注意到,并称之为“惰性电子对效应”。产生惰性电子对效应,原因是多方面的,仅从结构上考虑主要有:从第四周期过渡到第五周期,原子的次外层结构相同,所以同族元素相应的化合物性质改变较有规律。从第五到第六周期,次外电子层虽相同,但倒数第三层电子结构发生改变,第一次出现了4f电子,由于f电子对核电荷的屏蔽作用比d电子更小,以使有效电荷Z*也增加得多,6s2也变得稳定,所以第六周期p区元素和第五周期元素相比,又表现出一些特殊性。五,无机化合物的水解性无机物的水解是一类常见且十分重要的化学性质。在实践中我们有时利用他的水解性质(如制备氢氧化铁溶胶等),有时却又必须避免它的水解性质(如配置SnCl2溶液等)。1,影响水解的因素1)电荷和半径从水解的本质可见:MA溶于水后是否发生水解作用,主要决定于M+和A-离子对配位水分子影响(极化作用)的大小,显然金属离子或阴离子具有高电荷和较小的离子半径时,他们对水分子有较强的极化作用,因此容易发生水解,反之低电荷和较大离子半径的离子在水中不易发生水解,如:AlCl3,SiCl4遇水都极易水解:AlCl3+3H2O=Al(OH)3+3HCl,SiCl4+4H2O=H4SiO4+4HCl;相反,NaCl,BaCl2在水中基本不发生水解。2)电子层结构我们知道Ca2+,Sr2+和Ba2+等盐一般不发生水解,但是电荷相同的Zn2+,Cd2+Hg2+等离子在水中却会水解,这种差异主要是电子层结构不同而引起的。Zn2+,Cd2+,Hg2+等离子是18e-离子,他们有较高的有效核电荷,因而极化作用强,容易使配位水发生水解。而Ca2+,Sr2+和Ba2+等离子是8e-离子,它们具有较低有效核电荷和较大的离子半径,极化作用较弱,不易使配位水发生分解作用,即不易水解。总之,离子的极化作用越强该离子在水中就越容易水解。此外还可以看到非稀有气体构型(18e-,9-17e-,18+2e-)的金属离子,他们的盐都容易发生水解。3)空轨道我们知道碳的卤化物如CF4和CCl4遇水不发生水解,但是比碳的原子半径大的硅其卤化物却易水解,如:SiX4+4H2O=H4SiO4+4HX,对于四氟化硅来讲:3SiF4+4H2O=H4SiO4+4H++2SiF62-这种区别是因为碳原子只能利用2s和2p轨道成键,这就使其最大共价数限制在4,并阻碍水分子中氧原子将电子对给予碳原子,所以碳的卤化物不水解。然而硅不仅有可利用的3s和3p轨道形成共价键,而且还有空的3d轨道,这样,当遇到水分子时,具有空的3d轨道的Si4+接受水分子中氧原子的孤电子对,而形成配位键,同时使原有的键削弱,断裂。这就是卤化硅水解的实质,由于相同的理由,硅也容易形成包含sp3d2杂化轨道的SiF62-配离子。NF3不易水解,PF3却易水解也可以用同样的理由解释。硼原子虽然利用2s和2p轨道成键,但是因为成键后在2P轨道中还有空轨道存在,所以硼原子还有接受电子对形成配位键的可能,这就是硼的卤化物为什么会强烈水解的原因。4)除结构因素影响水解反应以外,增高温度往往使水解加强。5)由于水解反应是一个可逆平衡,所以溶液的酸度也会影响水解反应的进行。2,水解产物的类型一种化合物的水解情况主要决定于正负两种离子水解情况。负离子的水解一般比较简单,下面主要讨论正离子水解的情况。水解产物的类型大致可分为以下几种:碱式盐,氢氧化物,含氧酸(水解后所产生的含氧酸,有些可以认为是相应氧化物的水合物)。无机物水解产物类型上的差别,主要是化合物中正离子和负离子对配位水分子的极化引起的。离子极化作用和水解产物关系对比阳离子阴离子极化作用[H2O·M·OH2]2+[H2O·A·H2O]2-[H2O·M·OH]+[H2O·A·H]-增强[HO·M·OH][H·A·H][HO·M·O]-[O·M·O]2-水解反应有时伴有其他反应而使产物复杂化,这些反应有聚合,配合,脱水和氧化还原等。例如有些盐发生水解时首先生成碱式盐,接着这些碱式盐聚合成多核阳离子,如:Fe3++H2O→[Fe(OH)]2++H+,2Fe3++2H2O→[Fe2(OH)2]4++2H+当Fe3+离子的水解作用再进一步进行时,将通过羟桥出现更高的聚合度,以至逐渐形成胶体溶液,并最后析出水合氧化铁沉淀。这类沉淀从溶液中析出时均呈絮状,十分疏松。这就是因为沉淀中包含着大量的水分,其来源首先就是水合离子内部所含有的那些水分。有时水解产物还可以同未水解的无机物发生配合作用,如:3SnCl4+3H2O=SnO2·H2O+2H2SnCl6综上所述,就无机物的水解反应,可归纳出几条规律:1,随正,负离子极化作用的增强,水解反应加

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功