已知:AB=4,AC=2,D是BC中点,AD是整数,求AD已知:D是AB中点,∠ACB=90°,求证:12CDAB已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC1.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C2.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BEADBCDABCCDBABACDF21E6.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。.7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C8已知:AB=CD,∠A=∠D,求证:∠B=∠CDCBAFEABCD9.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE10.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):FAEDCBOEDCBA24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2CE∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90°又∵∠ADB=∠CDE∴∠ABD=∠ACF在△ABD和△ACF中∠ABD=∠ACF,AB=AC,∠BAD=∠CAF=90°∴△ABD≌△ACF(ASA)∴BD=CF∴BD=2CE25、(10分)如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。证明:∵BE‖CF∴∠E=∠CFM,FEDCBAMFECBAFEDCBA∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.27、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。三角形ABD和三角形BCD的三条边都相等,它们全等,所以角ADB和角CDB相等,它们的和是180度,所以都是90度,BD垂直AC28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF证明:在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。因为AB=DCAE=DF,CE=FBCE+EF=EF+FB所以三角形ABE=三角形CDF因为角DCB=角ABFAB=DCBF=CE三角形ABF=三角形CDE所以AF=DE30.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.证:∵AB平行CD(已知)∴∠B=∠C(两直线平行,内错角相等)∵M在BC的中点(已知)∴EM=FM(中点定义)在△BME和△CMF中BE=CF(已知)∠B=∠C(已证)EM=FM(已证)∴△BME全等与△CMF(SAS)∴∠EMB=∠FMC(全等三角形的对应角相等)∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质)∴E,M,F在同一直线上31.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.DCBAFDCBAFEDCBA证明:∵AF=CE∴AF+EF=CE+EF∴AE=CF∵BE//DF∴∠BEA=∠DFC又∵BE=DF∴⊿ABE≌⊿CDF(SAS)32.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF。连结BD,得到等腰三角形ABD和等腰三角形BDC,由等腰△两底角相等得:角ABC=角ADC在结合已知条件证得:△ADE≌△ABF得AE=AF33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.因为角1=角2∠3=∠4所以角ADC=角ABC.又因为AC是公共边,所以AAS==三角形ADC全等于三角形ABC.所以BC等于DC,角3等于角4,EC=EC三角形DEC全等于三角形BEC所以∠5=∠634.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.因为D,C在AF上且AD=CF所以AC=DF又因为AB平行DE,BC平行EF所以角A+角EDF,角BCA=角F(两直线平行,内错角相等)然后SSA(角角边)三角形全等35.已知:如图,AB=AC,BDAC,CEAB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.证明:因为AB=AC,所以∠EBC=∠DCB因为BD⊥AC,CE⊥AB所以∠BEC=∠CDBBC=CB(公共边)则有三角形EBC全等于三角形DCB所以BE=CD36、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。求证:DE=DF.AAS证△ADE≌△ADFDBCcAFE654321EDCBAACBDEFAEBDCF37.已知:如图,ACBC于C,DEAC于E,ADAB于A,BC=AE.若AB=5,求AD的长?角C=角E=90度角B=角EAD=90度-角BACBC=AE△ABC≌△DAEAD=AB=538.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC证明∵AB=AC∴△ABC是等腰三角形∴∠B=∠C又∵ME=MF,△BEM和△CEM是直角三角形∴△BEM全等于△CEM∴MB=MC39.如图,给出五个等量关系:①ADBC②ACBD③CEDE④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.已知:求证:证明:已知1,2求证4因为AD=BCAC=BD,在四边形ADBC中,连AB所以△ADB全等于△BCA所以角D=角C以4,5为条件,1为结论。即:在四边形ABCD中,∠D=∠C,∠A=∠B,求证:AD=BC因为∠A+∠B+∠C+∠D=360∠D=∠C,∠A=∠B,所以2(∠A+∠D)=360°,∠A+∠D=180°,所以AB//DC40.在△ABC中,90ACB,BCAC,直线MN经过点C,且MNAD于D,MNBE于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC≌CEB;②BEADDE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.DCBAEBCMAFEABCDE(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBEAC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF(1)证明;因为AE垂直AB所以角EAB=角EAC+角CAB=90度因为AF垂直AC所以角CAF=角CAB+角BAF=90度所以角EAC=角BAF因为AE=ABAF=AC所以三角形EAC和三角形FAB全等所以EC=BF角ECA=角F(2)(2)延长FB与EC的延长线交于点G因为角ECA=角F(已证)所以角G=角CAF因为角CAF=90度所以EC垂直BF42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。证明:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF连接BF、CE,证明△ABF全等于△DEC(SAS),然后通过四边形BCEF对边相等的证得平行四边形BCEF从而求得BC平行于EF44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由在AB上取点N,使得AN=AC∠CAE=∠EAN,AE为公共FBCAMNE1234AEBMCF边,所以三角形CAE全等三角形EAN所以∠ANE=∠ACE又AC平行BD所以∠ACE+∠BDE=180而∠ANE+∠ENB=180所以∠ENB=∠BDE∠NBE=∠EBNBE为公共边,所以三角形EBN全等三角形EBD所以BD=BN所以AB=AN+BN=AC+BD45、(10分)如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.证明:∵AD是中线∴BD=CD∵DF=DE,∠BDE=∠CDF∴△BDE≌△CDF∴∠BED=∠CFD∴BE‖CF46、(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DEBF.求证:ABCD∥.证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,在Rt△DEC和Rt△BFA中,DE=BF,AB=CD,∴Rt△DEC≌Rt△BFA,∴∠C=∠A,∴AB∥CD.47、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD【待定】48、(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.结论:CEDE。当∠AEB越小,则DE越小。证明:过D作AE平行线与AC交于F,连接FB由已知条件知AFDE为平行四边形,ABEC为矩形,且△DFB为等腰三角形。RT△BAE中,∠AEB为锐角,即∠AEB90°∵DF//AE∴∠FDB=∠AEB90°△DFB中∠DFB=∠DBF=(180°-∠FDB)/245°RT△AFB中,∠FBA=90°-∠DBF45°∠AFB=90°-∠FBA45°∴ABAF∵AB=CEAF=DE∴CEDE49、(10分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.先证明△ABC≌△BDC的出角ABC=角DCBACEDBADECBFABECD.3421DCBA在证明△ABE≌△DCE得出AE=DE50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.证明:作CG平分∠ACB交AD于G∵∠ACB=90°∴