华中科技大学硕士学位论文TFT-LCD制造工艺的研究姓名:田雨申请学位级别:硕士专业:光学指导教师:吴颖20080425TFT-LCD12-3Berreman45TFT-LCDTFT-LCD6TFT-LCDTFTTFT-LCDIAbstractInthisthesisforthemasterate,weexpatiateonseveralcommonLiquidCrystalDisplaymodesonthebasisofliquidcrystals’physicalcharacters,andputourmostattentiontoThin-Film-TransistorLiquidCrystalDisplay’s(TFT-LCD)structureandit’smanufacturetechnics.ThisinvestigationgivesusabroadlytheoryandapplicationfoundationtocomprehendthewholePro-ductionTechnicsofLiquidCrystalDisplays,perfecttheworkingproceduretechnics,andstudymoreadvancedmanufacturetechnics.Theworkofourpapercanbedividedintofollowingparts:(1)Wehaveintroducedthehistoryofliquidcrystals’theoryandthedevelopmentofLiquidCrystalDisplay.Then,weexplainliquidcrystalssortsandthecharacteristicsofeachone.(2)Takingliquidcrystalsphysicalcharactersasfoundation,wehavediscussedits’dielectricanisotropyandthemeasurementoforder-parameter,andrefertotwodifferentbasicliquidcrystalstheorieswhichareStatisticalDescriptiontheoryandContinuumElasticBodytheory.(3)Wehavediscussedappliedopticsaboutliquidcrystals,suchasrefraction,light-spinandselectivereflection.WealsotalkaboutthematrixcalculationmethodonLiquidCrystalDisplayinthispart,mainlyrelatetoJonesmatrixmethodandBerremanmatrixmethod.(4)Accordingtothequalityofdisplay,weshowseveraldisplaymodesandtheirdisplayprin-cipia.(5)WehavediscussedtheTFT-LCD’sstructure,drivingtechniqueandcolordisplaymethod.wealsohaveilluminatedit’scentraltechnologyquality,suchasintervaldistanceofim-ageelements,screensize,etc.(6)Wehavestudiedtheprimarymanufactureworkingproceduresandits’technics,dividedTFT-LCDmanufactureworkingproceduresintofoursteps,theyareTFTArrayProcess,ColorFilterFabricationProcess,LiquidCrystalCellProcessandModuleAssemblyProcess.Keywords:Anisotropy;OpticsofLiquidCrystals;DisplayModes;ThinFilmTransistorDis-play;TFT-LCDManufactureTechnicsII¤¤p11.11888F:Reinitzer145:5oC178:5oC-OttoLehmannFliessendeKrystalleLiquideCrystal[1,2][3]Freedericksz[4]1963WilliamsWilliams[5]1968Heilmeier[6,7]MBBAMOS-TFTCMOS11969[8]1974Gray5CB5CB1972SchadtHelfrich[9]1980198419891971LechnerHughes19731990TFT199620002090199620»302003500200420Frank1958[10]FrederiksEricksen[11,12]Lesli[13,14]Parodi[15]AltPleshko1974[16][3]TFT-LCD301090%107090TFTiSuppli=Stanfordresouses[3]21.25[2]SmecticliquidcrystalsNematicliquidcrystalsChlestoricliquidcrystals1-11-1[2]1.2.1ABC::::::ABC[3]1A3—ASAAAAAA2BBA6B3CCABACCCC45±ACCACACACCC[3]41.2.2[1]360oPPPBragg–1.2.3[1]X5[1][17]1.3-BerremanTFT-LCDTFT-LCDTFT-LCDTFT622.1[8,17]®k=1+4¼NhFf¹®+23¢®s+F¹23·T[1¡(1¡3cos2¯)s]g(2-1)?=1+4¼NhFf¹®¡13¢®s+F¹23·T[1+12(1¡3cos2¯)s]g(2-2)¢=k¡?=4¼NhFf¢®¡F¹22·T(1¡3cos2¯)gs(2-3)?k¢¹s®·TKhF¯Nmol=cm3¢®®k®?¹®=(®k+2®?)[1]2-3¢®¯¹Ts¢¢0¢02.22.2.1nnn=¡n7Sµ,hcosµiShcos2µiS=1S=13S=0P2S=hP2(cosµ)i=h32cos2µ¡12i(2-4)2.2.2SSX[3]¹m=°mH(2-5)°mMM=P¹m¢V(2-6)M=ÂmH(2-7)ÂmÂm=N0°m(2-8)°k°?Âsolk=N0°k(2-9)8Âsol?=N0°?(2-10)SZZ2-1Hnaµ2-1°k°?HHcosµa°kHcosµZ¹zk=°kHcos2µ(2-11)HsinµZ¹z?=°?Hsin2µ(2-12)Z¹z=muzk+muz?=°kHcos2µ+°?Hsin2µ(2-13)¢°¢°=°k¡°?Hsin2µ(2-14)¹z=H°k¡¢°Hsin2µ(2-15)9ZZh¹zi=H°k¡¢°Hhsin2µi(2-16)2.4h¹zi=H°k¡23¢°+23S¢°(2-17)ZÂmolz=°k¡23¢°+23S¢°(2-18)zx¹xxÂmolxÂmolx=°k¡23¢°¡13S¢°(2-19)zxÂk=N0°molz=N0(°k¡23¢°)+23N0S(°k¡°?)(2-20)Â?=N0°molx=N0(°k¡23¢°)¡13N0S(°k¡°?)(2-21)Âk¡Â?=S(Âsolk¡Âsol?)(2-22)Âsolk,Âsol?Âk,Â?dd=lgI0I(2-23)10I0Iddkd?SS=dk¡d?dk+2d?=N¡1N+2(2-24)N=dkd?¯S=N¡1N+2(1¡32sin2¯)¡1(2-25)dkd?I0I0Idk90±d?2.3Maier-Saupe[18–20]Landau-deGennesFloryOnsager[21][3][19][20][21]Maier-Saupe11Vµ=0P2=0µ=¼=2P2=1¡P2=0µ=0µ=¼=2¡P2=0S=0S=1SV=¡aSP2(cosµ)(2-26)aµMaier-SaupeLondonf(µ)=exp(¡¯U)=exp[¯aSP2(cosµ)]=Z(2-27)¯=1·TZZ=Zexp[¯aSP2(cosµ)]d(cosµ)(2-28)S=hP2(cosµ)i(2-29)=ZP2cosµf(µ)d(cosµ)(2-30)Zf(µ)S=R1¡1P2(cosµ)exp[¯aSP2(cosµ)]d(cosµ)R1¡1exp[¯aSP2(cosµ)]d(cosµ)(2-31)S,2-2122-2ST[3]2-2S=0Tc=0:22019a=kS=ScScTc=0S=1F=E¡TS(2-32)ETSE=12NhVi(2-33)S=¡·lnf(µ)(2-34)NS=¡N·hlnf(µ)i(2-35)f(µ)S=NThVi+N·ln(Z)(2-36)V(cosµ)F=¡12NaS2¡N·Tln(Z)(2-37)13T=0T=0:22019a=·S1Sc=0:4289a=·TcTc10.85¢S=¡(@F@T)TC=¡127aB2C2(2-38)¢E(Tc)=N=aS2c=Tc(2-39)2.4C.W.Oseen[22]H.ZÄocher[23]20F.C.Frank[24][3][23][24][25]2.4.1[25]2-3142-3abc[17]2-3K11K22K33K11K33K22[24]T1=K11@^nx@x±x(2-40)T1=K22@^nx@x±y(2-41)T1=K33@^nx@x±z(2-42)[24]T1=12K11(r¢n)2(2-43)T1=12K22(r¢n)2(2-44)T1=12K33(r¢n)2(2-45)152.4.2F0[22,23]¢F,F=F0+¢F(2-46)[22–24]F=F0+1=2ZVd3r[K11(r¢n)2+K22(r¢n)2+K33(r¢n)2](2-47):12K22(r¢n+2¼P0)2P012B(dudz)2B0F=F0+1=2ZVd3r[K11(r¢n)2+K22(r¢n)2+K33(r¢n+2¼p0)2+12B(du=dz)2](2-48)2.4.3Frederiks[26]±FT=±Fe(2-49)±FT±Fe2-4^n?k¢=?¡kZ^nZµ162-4DjDj=kcos2µ+?sin2µ(2-50)We=12E¢D=E22(kcos2µ+?sin2µ)=E22(¢cos2µ+?)(2-51)fe=12¢(E¢ˆn)(2-52)[26]F=12ZVd3r¢(E¢ˆn)(2-53)[26]F=12ZVd3r[K11(r¢n)2+K22(r¢n)2+K33(r¢n+2¼p0)2+12B(du=dz)2+¢(E¢ˆn)](2-54)I[3,26]2-52-52-5(HHc)17HHcHHcHHHˈynx2-5I¡12Âa(n¢H)2(2-55)F=12ZVd3r[K11(r¢n)2+K22(r¢n)2+K33(r¢n+2¼p0)2¡Âa(n¢H)2](2-56)2-5n=(cosµ;0;sinµ)H=(0;0;H)F=12Zd2¡d2[(K11cos2µ+K33sin2µ)(dµdz)¡Âa(n¢H)2]dz[8](2-57)–z=§d=2;µ=0;z=0;µ=µm;dµdµ=0µmµmHZµm0sK11cos2µ+K33sin2sin2µm¡sin2mdµ=pÂa¢Hd2(2-58)µm=0HcHc=¼dsK11Âa(2-59)III;III[7]1833.1oe¢n=ne¡no0[27]3-125:1oC5CB4--40-none[27]3-15CB25:1oCnon