matlab高等数学问题课后答案(薛定宇)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

pA^Œ˘flKMATLAB)£1n⁄¯‰˘&E˘11O¯Œ˘Vª1.3\¯SCMATLAB‚§¿\demo•-§dŁXØ{.«§S§+MATLAB3)Œ˘flK¡U{)3MATLABJ«˛e\demo•-§KmXª1-1⁄«I§IL–J«|«SNª1-1MATLAB«§S.¡~X§^rJ3-DVisualization«§KXª1-2⁄««‘†§´¥OpenthisExample98§KXª1-3⁄««.¡^r–3T.¡eUU§¯«’SN§¢yø«Ø3T§S.¡eI¥2.bfiLyapunov§Xe816357492X+X1641931421=123456780`|^lookforlyapunov•-˛’lyapunovk’…Œ¶§¿^doc•-…’…Œ?N^&E§*·˜UT§)§¿u)211O¯Œ˘Vªª1-2MATLAB«§S.¡~ª1-3MATLABNz«§S.¡)Ø/|^MATLAB)ß\flK§3ˇ·Øk^’X\)§Lyapunov§§\ØX)T§ ⁄§\AT|¢e§ww=…Œ–)Lyapunov§øIlookforlyapunov•-§‰3•-IHelpŁeUJ«|¢’lyapunov§–Ǒ~§\UXe&Edlyap-SolvediscreteLyapunovequations.lyap-Solvecontinuous-timeLyapunovequations.lyap2-Lyapunovequationsolutionusingeigenvaluedecomposition.pdlstab-TestrobuststabilityviaparametricLyapunovfunctions11O¯Œ˘Vª3lyapkr-Lyapunov/Sylvesterequationsolver(Kroneckerproductapproach).dlyapchol-Square-rootsolverfordiscrete-timeLyapunovequations.lyapchol-Square-rootsolverforcontinuous-timeLyapunovequations.l&Ew§12!3^U•§\I…A…Œ?&E§Xhelplyap•-§‰doclyap•-£mHTML⁄§K–lyapSolvecontinuous-timeLyapunovequations.X=lyap(A,Q)solvestheLyapunovmatrixequation:A*X+X*A’+Q=0X=lyap(A,B,C)solvestheSylvesterequation:A*X+X*B+C=0X=lyap(A,Q,[],E)solvesthegeneralizedLyapunovequation:A*X*E’+E*X*A’+Q=0whereQissymmetricSeealsolyapchol,dlyap.ReferencepageinHelpbrowserdoclyapØ'flK§\‹uy¥Xe&E'flKX=lyap(A,B,C)solvestheSylvesterequation:A*X+X*B+C=0¿\–ŒA=816357492,B=1641931421,C=−1234567805¿C˛ø\–^e¡Ø)'flKA=[816;357;492];B=[1641;931;421];C=-[123;456;780];X=lyap(A,B,C)(JǑX=0.0748720.089913−0.432920.00807160.48144−0.216030.0195770.182641.1579(J··v'§Q”Ø›!·uNouQ”{{·(J\§§ww··v§A*X+X*B+C(JǑ411O¯Œ˘Vª−1.2212×10−151.3323×10−154.4409×10−165.3291×10−151.7764×10−158.8818×10−167.1054×10−151.7764×10−152.2204×10−15w,§(JØp,§0X…p{)))){3.|^دˇ•-docsymbolic/diff˛˛$¥…Œdiff§3)⁄Jłˇ&E˜:`X)~1.1¥flK§¿T~’(J))'flKIe¡A‰1§†˛Cxsymsx1§'…ŒL«5f=sin(x)/(x^2+4*x+3)1n§§’X4Œ§K–e¡•-f4=diff(f,x,4)12MATLAB§SO˜:1.ؘMATLAB‚§¿Øtic,A=rand(500);B=inv(A);norm(A*B-eye(500)),toc`$1Tا*(J§¿|^help‰doc•-Ø\GØ?1ˇ&E˛§¯^ª§Sª(J)”)øªØ¥m'Œ˘„´·k)⁄500×500!'¯ŒA§Ø_§_DB§2OAB−I§¥IǑ500×500§Œ¿w«5§n(JAT·§du^VŒ(§⁄–‹)Ø•-^u1øA^Øs⁄m2.`^˛|–“Lı“f(x)=x5+3x4+4x3+2x2+3x+6§¿-x=(s−1)/(s+1)§f(x)O⁄s…Œ)CO–ˇLsubs()…Œ¢y§=(JØU·{§⁄–IØ(J?1z{))ø–ˇLsimple()…Œ¢ysymsxs;f=x^5+3*x^4+4*x^3+2*x^2+3*x+6;F=simple(subs(f,x,(s-1)/(s+1)))(Jz{F(s)=3+23s+54s2+70s3+19s5+23s4(s+1)53.` nŒ√2!6√11!sin1◦!e2!ln(21)200kŒi) nŒ–ˇLvpa()…Œm§L5¿§I nŒ=⁄˛a.§˜KU((JN1=vpa(sqrt(sym(2)),200),N2=vpa(sym(11)^(1/6),200)N3=vpa(sin(sym(pi)/180),200),N4=vpa(exp(sym(2)),200)N5=vpa(log(sym(21)),200)A nŒ200'OǑN1=1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605715612MATLAB§SO˜:N2=1.4913014754131089242014946687648253445426761253261577981518483147412893600154646617792759695448637729329519548283629181900525497764708600917909528961338083373475281160289205994986450619919284949138885N3=0.017452406437283512819418978516316192472252720307139642683612427640597384203928070042001926791021346914488426873249509483758066561253481112810108146016474143779998382023403544649197667454355161539723988N4=7.3890560989306502272304274605750078131803155705518473240871278225225737960790577633843124850791217947737531612654788661238846036927812733744783922133980777749001228956074107537023913309475506820865818N5=3.0445224377234229965005979803657054342845752874046106401940844835750741559706782346612742534016036157810317232718090066540917564836083066642017599659311781865109872372876561505616330478528283343162475XJk=§KkU⁄ˇ(J§–ge¡Ø(JN6=vpa(sin(pi/180),70)(JǑN6=0.017452406437283511653202339175550150685012340545654296875000000000000005¿§N3’§k16kŒi·§ø·ˇǑ3¡OØ¥§k^VŒ(Opi/180§2^vpa()…ŒØVŒ?¿O§,U3vŒkŒi⁄–3¡OØ¥§˘krw«=Ǒ˛.C4.fiŒ˘…Œf(x)=xsinx√x2+2(x+5)§g(x)=tanx§`E…Œf(g(x))g(f(x)))|^subs()…ŒCO§K–⁄IE…Œsymsx;f=x*sin(x)/sqrt(x^2+2)/(x+5);g=tan(x);F1=simple(subs(f,x,g))F2=simple(subs(g,x,f))ªØ(JǑF1(x)=sin(tanx)tanx(tanx+5)√tan2x+2§F2(x)=tanxsinx√x2+2(x+5)5.duVŒ(k‰Œ§ŒØJ3v`^Œ{˛${O¿’C1050§¥Cnm=m!n!(m−n)!)n!3MATLABe–ˇLprod(1:n)O§Ǒ–ˇLΓ…ŒO§=dgamma(n+1)§XJn§K˜uVŒ(Œ){J–()§I/ˇu˛$U(/O5r1=gamma(51)/gamma(11)/gamma(41)m=sym(50);n=sym(10);r2=gamma(m+1)/gamma(n+1)/gamma(m-n+1)12MATLAB§SO˜:7Œ)){(J'OǑr1=1.027227816999992×1010§r2=102722781706.^MATLABØ\ABA=1234432123413241,B=1+4j2+3j3+2j4+1j4+1j3+2j2+3j1+4j2+3j3+2j4+1j1+4j3+2j2+3j4+1j1+4j¡·4×4§

1 / 158
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功