7.3水泥土搅拌桩复合地基

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

17.3水泥土搅拌桩复合地基水泥土搅拌桩是利用水泥或水泥系材料为固化剂,通过特制的深层搅拌机械,在地基深处就地将原位土和固化剂(浆液或粉体)强制搅拌,形成水泥土圆柱体。由于固化剂和其它掺合料与土之间产生一系列物理化学反应,使圆柱体具有一定强度,桩周土得到部分改善,组成具有整体性、水稳性和一定强度的复合地基,也可做成连续的地下水泥土壁墙和水泥土块体以承受荷载或隔水。一、发展概况自1824年英国人阿斯琴首先制造出硅酸盐水泥并取得专利以来,利用水泥灌浆止水,利用水泥和土拌合作为道路基层已得到应用,但主要是作土的浅层处理。美国在第二次世界大战后研制成功一种就地搅拌桩(MIP),即从不断回转的螺旋钻中空轴的端部向周围已被搅松的土中喷出水泥浆,经叶片的搅拌而形成水泥土桩,桩径0.3~0.4m,长度10~12m。1953年日本清水建设株式会社从美国引进这种方法,继而又开发出以螺旋钻机为基本施工机械的CSL法,MR—D法(以开发公司名称的首字母命名)。CSL法和MR—D,都是采用螺旋钻杆上带有特殊形状的搅拌翼片,并通过钻杆供给水泥浆,与土进行强制搅拌。以上采用喷射水泥浆的湿法工艺成桩的统称CDM法。由CDM法派生的DLM工法、HCM工法、SMW工法、TRD工法等,均由日本首先研发。所谓DLM法,是1965年日本运输省港湾技术研究所开发的将石灰掺入软弱地基中加以原位搅拌,使之固结的深层搅拌工法。1974年由于大面积软土加固工程的需要,由日本港湾技术研究所、川崎钢铁厂等对石灰搅拌机械进行改造,合作研制开发成功水泥搅拌固化法(CMC),用于加固钢铁厂矿石堆场地基,加固深度达32m。此外还有类似的DCM法、POCM法等。DLM施工法,如其名称中所指明的那样,是一种以生石灰为固化剂的施工法,由两根带有旋转翼片的回转轴及在其中间部位兼作导向柱的固化剂输入管组成,固化剂是从两个搅拌面的交叉部位输入地基中的,通常形成两个圆叠合形状断面的双柱状加固体。施工顺序是:首先在预定的位置安装好机械,转动搅拌翼片,使其边切土边靠自重下沉。待搅拌翼片下沉到预定深度时开始压入固化剂,同时边提升搅拌轴边回转,使固化剂与地基土充分拌匀,形成柱状加固体。根据需要,也可将加固柱体搭接排列,形成壁状或块状加固体。其它的DLM类施工机械,是DLM机械的改进型,几乎均采用水泥浆作固化剂。这些施工机械虽然各有特色,但基本结构都和DLM机械相同,都由偶数搅拌轴(2.4.6.8)组成。HCM类施工法,是DLM工法的发展,是日本北川铁工所,受日本通产省技术研究基金资助,于1975年研究成功的海底软弱地基稳定处理法(HedoroContinuousMixingMethod)的一系列施工方法,包括DCM法(DeepContinuousMethod),DeMIC法(DeepMixingImprovementbyCementStabilizer)和DCCM法(DeepCementContinuousMixingMethod)等三种施工法。这类施工方法,搅拌翼片边回转边上下移动,慢速前进,在一定的活动范围内连续进行加固。固化剂以水泥浆为主,采用加压送入搅拌轴的输送方式。水泥浆经搅拌轴从搅拌翼片背面的几个喷出口喷撒出来。其施工顺序是:先将搅拌翼片降落到预定位置的海底表面,启动搅拌翼片边回转,边喷出一定量的水泥浆,并以一定速度向前推进,直到搅拌翼片下降到设计深度,最后按一定的速度提升到海底表面。如此进行,直至完成全部加固范围。2搅拌翼片的运动轨迹,为W字型轨迹,它是由同时进行的垂直上下和水平移动形成的。通过调整水平方向的移动速度,可提高同一地方混合搅拌的效果。日本的CDM法还开发了伸缩式和连结式可变搅拌轴,以降低机架高度,增加搅拌深度。其水上搅拌船搅拌深度达水面下70m,海底下50m,8头一次搅拌面积6.91m2,每小时搅拌能力达90m3以上。除日本外,美国、西欧、东南亚地区也广泛采用了CDM法。苏联在1970年研究功一种淤泥水泥土桩,用于港湾建设工程中。淤泥含水量高达100%~120%,但掺加10~15%的水泥后,半年龄期强度可达3MPa,较钢筋混凝土桩的造价低40%。国内由冶金部建筑研究总院和交通部水运规划设计院于1977年在塘沽新港开始进行机械考核和搅拌工艺试验。1980年初上海宝山钢铁总厂的三座卷管设备基础,采用了深层搅拌处理软土地基,获得了成功。同年11月由冶金部主持通过了“饱和软粘土深层搅拌加固技术”鉴定,开始了推广应用。同时开发了单轴粉浆两用机。1980年初天津市机械施工公司与交通部一航局科研所等单位合作,利用日本进口螺旋钻孔机,改装制成单搅拌轴、叶片输浆型深层搅拌机(GZB-600型,后来又开发了600型双轴叶片喷浆搅拌机)。尔后,浙江大学和浙江临海市一建公司机械施工处共同研究成功DSJ-Ⅱ型单头深层搅拌机,最大加固深度20~22m,桩径Φ400~700mm,单轴搅拌机可适用于喷浆(CMD法)喷粉(DJM法)。粉体喷射搅拌法(DJM),最早由瑞典人KjeldPaus于1967年提出,1971年成功采用喷射石灰粉加固15m厚软土。作为日本建设省综合开发计划中有关“地基加固新技术开发”的一部分,以建设省土木研究所(施工技术研究室)和日本建设机械化协会(建设机械化研究所)为中心,在1977年至1979年开发了专项技术,由于开发了在土中分离加固材料与空气以及排出空气的技术,使工法达到了实用化,DJM法采用了压缩空气连续通过钻杆向土中喷射水泥粉的技术。搅拌机有单轴和双轴,标准搅拌直径1000mm,深度达33m。1983年铁道部第四勘测设计院开始进行粉体喷射(石灰粉)搅拌法的试验研究,1984年在广东省云浮硫酸铁矿铁路专用线盖板箱涵软土地基加固工程中应用。使用的深层搅拌机是铁道部第四勘测设计院和上海探矿机械厂共同开发的单头GPP—5型桩机,桩径Φ500mm,桩长8m。经过几年的实践和改进,上海探矿机械厂,铁道部武汉工程机械研究所等厂家纷纷生产了步履式单头粉喷搅拌机GPP型和PH型等,桩长可达14~20m,桩径Φ500mm。铁道部第四设计院与空军雷达学院共同开发的GS—1型气固两相粉体流量计,使计量监控有了发展。这些粉喷机目前多数采用水泥粉喷射,喷射生石灰粉者很少。铁道部科学研究院1988年研制成功DDG—2型工程钻机,配以泥浆泵和粉喷机等可以进行浅层水泥浆搅拌和粉喷搅拌,加固深度6m,成孔直径200mm,可作60°的斜搅,主要用于整治路基及道床病害。上世纪80年代日本在CDM工法的基础上开发了一种名叫SMW工法的技术,采用三轴搅拌机在施工水泥土地下连续墙的过程可实现套孔搅拌,保证了水泥土墙的止水效果,是目前基坑工程止水帷幕常用的有效方法。在基坑支护被动区软土加固中也常用三轴搅拌机进行施工。在连续的水泥搅拌墙中插入型钢形成抵抗土压力的同时兼作止水帷幕的水泥土型钢挡墙称为SMW工法,上海市已形成地方标准,建设部也颁布了行业标准。近几年我国又从日本引进了TRD工法,该工法类似地下连续墙双轮铣的形式可施工水泥土地下连续墙,墙厚0.7m~1.0m,成墙深度可达60m。3二、应用范围深层搅拌水泥土桩问世以来,发展迅速,应用广泛。日本大量用于各种建筑物的地基加固、稳定边坡、防止液化、防止负摩擦等。CDM法在日本及其它发达国家还广泛用于海上工程,如海底盾构稳定掘进、人工岛海底地基加固,桥墩基础地基加固、岸壁码头地基加固、护岸及防波堤地基的加固等等。由于日本国的特殊环境,其海上工程的投入相当巨大,也促进了CDM工法的迅速发展。国外的深层搅拌机械采用了高新技术,动力功率大,穿透能力强,实现了施工监控的自动化,确保了施工质量,目前尚未见到失败的工程例证。其工程应用中,设计方法比较保守,置换率高达40%~80%,桩体设计强度取值一般不超过0.6MPa。由于理论研究投入不够,没有取得完整的应力场和变形场数据,使其设计方法不尽人意。上世纪70~80年代,我国的水泥土搅拌桩广泛应用于多层建筑的软基处理、基坑支护重力式挡墙、基坑止水帷幕或被动区加固、路基软基加固、堆载场地加固等领域,少数高层建筑也采用过水泥土搅拌桩复合地基。由于我国研发的搅拌机械为轻型机械,功率较小、穿透能力不足,规范规定仅适用于fak=140kPa以下的软土,应用范围受到限制,同时也出现了不少质量事故。20世纪90年代水泥土搅拌桩已淡出建筑物地基处理,但在路基、堆载场地软基加固及基坑工程中的应用仍长盛不衰。本世纪初SMW工法在我国发展迅速,除了在基坑支护结构支护中大量应用外,还采用三轴搅拌机械施工止水帷幕,效果良好。三一重工等厂家生产的国产单轴、三轴搅拌机已接近国际先进水平。其显著的特点是加固深度大、穿透能力强、效率高,加固深度已达35m,拓宽了应用范围,不再局限于软土中,在中密粉细砂、中密粉土、稍密中细砂中均可应用。因此规范取消了不能用于承载力特征值高于140kPa土中的限制。三、水泥土桩的作用机理水泥土桩是水泥或水泥系固化材料与土混合形成的桩,由于土质的不同,其固化机理也有差别。用于砂性土时,水泥土的固化原理类同于建筑上常用的水泥砂浆,具有很高的强度,固化时间也相对较短。用于粘性土时,由于水泥掺量有限(7%~20%),且粘粒具有很大的比表面积并含有一定的活性物质,所以固化机理比较复杂,硬化速度也比较缓慢。水泥土桩作成块体用来挡土隔水或直接用作建筑物的地基或基础等,主要考虑混合体本身的固化机理,作为复合地基处理时,尚要涉及桩间土力学性质的变化。(一)水泥土的固化原理1、水泥的水解和水化反应水泥的主要成分有氧化硅、氧化钙、氧化铝,还有氧化铁、氧化硫等。这些氧化物分别组成不同的水泥矿物,有硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硫酸钙等。上述水泥矿物和水化合后,产生水解和水化反应,生成氢氧化钙、含水硅酸钙、含水铝酸钙及含水铁铝酸钙等化合物。其主要反应通式归纳为:水泥+H2O→CSH+Ca(OH)2(7.3-1)水泥+H2O→CAH(7.3-2)上述水泥水化物CSH、CAH及Ca(OH)2生成后,能迅速溶于水,直至饱和。此时水分子虽然4能继续深入水泥颗粒,与水泥矿物产生反应,但新生物已不能再溶解,只能以细分散状态的胶体析出,上述反应称为水泥的水解水化反应。这些凝胶粒子有的自身硬化,形成水泥石骨架,有的则与其周围的具有一定活性的粘粒发生反应,这种反应即所谓的离子交换团粒化作用和凝硬反应。2、离子交换团粒化作用粘土作为一个多相散布系,和水结合时就表现出一般的胶体特征。土中含量最高的SiO2遇水后,形成硅酸胶体微粒,其表面带有钠离子Na+或钾离子K+,它们能和水泥水化生成的Ca(OH)2中的钙离子Ca++进行当量吸附交换,使较小的土颗粒形成较大的团粒,从而使土的强度提高。水泥水化物的凝胶粒子的比表面积比原来水泥颗粒大1000倍左右,因而产生很大的表面能,有强烈的吸附活性,能使较大的土团粒进一步结合起来,形成水泥土的团粒结构,并封闭各土团之间的空隙,形成坚固的连结。从宏观上来看,可使水泥土的强度进一步提高。3、凝硬反应随着水泥水化反应的深入,溶液中析出大量的钙离子,当其数量超过上述离子交换的需要量后,则在碱性环境中,能使组成粘土矿物的二氧化硅、三氧化二铝的一部分或大部分与钙离子进行化学反应,生成不溶于水的稳定的结晶化合物。其反应通式为:Ca+++2(OH)-+SiO2→CSH(7.3-3)Ca+++2(OH)-+Al2O3→CAH(7.3-4)根据电子显微镜扫描,X射线衍射和差热分析得知这些结晶物大致是属于铝酸钙水化物CAH系的4CaO·Al2O3·13H2O、3CaO·Al2O3·6H2O、CaO·Al2O3·10H2O等;属于硅酸钙水化物CSH系的4CaO·5SiO3·5H2O等,还有钙黄长石水化物2CaO·Al2O3·SiO3·6H2O等。这些新生的化合物在水中和空气中逐渐硬化,增大了水泥土强度,而且由于其结构致密,水分不易侵入,从而使水泥土具有足够的水稳性。至于碳酸化反应,由于土中CO2的含量很少,且反应缓慢,其固化效果不予考虑。4、水泥系固化剂的固化

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功