蔡杨阳专用QQ:152491391581中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.勾股定理的作用:(1)已知直角三角形的两边求第三边。(2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为n的线段考点三、锐角三角函数的概念1、如图,在△ABC中,∠C=90°①锐角A的对边与斜边的比叫做∠A的正弦,记为sinA,即casin斜边的对边AA②锐角A的邻边与斜边的比叫做∠A的余弦,记为cosA,即cbcos斜边的邻边AA蔡杨阳专用QQ:152491391582③锐角A的对边与邻边的比叫做∠A的正切,记为tanA,即batan的邻边的对边AAA④锐角A的邻边与对边的比叫做∠A的余切,记为cotA,即abcot的对边的邻边AAA2、锐角三角函数的概念锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数3、一些特殊角的三角函数值三角函数30°45°60°sinα212223cosα232221tanα3313cotα31334、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A);(2)平方关系:1cossin22AA(3)倒数关系:tanAtan(90°—A)=1(4)商(弦切)关系:tanA=AAcossin5、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);(4)余切值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。2、解直角三角形的理论依据在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c(1)三边之间的关系:222cba(勾股定理)(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:正弦sin,余弦cos,正切tan(4)面积公式:(hc为c边上的高)蔡杨阳专用QQ:152491391583考点五、解直角三角形应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。用字母i表示,即hil。坡度一般写成1:m的形式,如1:5i等。把坡面与水平面的夹角记作(叫做坡角),那么tanhil。3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°:ihlhlα蔡杨阳专用QQ:152491391584真题分类汇编详解2007-2014(2007)19.(本小题满分6分)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)(2008)19.(本小题满分6分)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB表示窗户,且2AB米,BCD表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD的最小夹角为18.6,最大夹角为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32,tan18.60.34,sin64.50.90,tan64.52.1)ABC北东ADDCBD蔡杨阳专用QQ:152491391585(2009)19.(本小题满分6分)在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角21CFE°,然后往塔的方向前进50米到达B处,此时测得仰角37CGE°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:3sin375°≈,3tan374°≈,9sin2125°≈,3tan218°≈)(2010)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB,AB=80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:oooo33711sin37tan37sin48tan48541010,,,)解:CGEDBAF第19题图B37°48°DCA第19题图蔡杨阳专用QQ:152491391586(2011)19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m.参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)(2012)20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45方向(点ABC、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin250.4226cos250.9063tan250.4663sin650.9063,,,,cos650.4226tan652.1445,)40º35ºADBC蔡杨阳专用QQ:152491391587(2013)20.(本题满分8分)一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D高度,如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD的长.(结果精确到0.1m)(2014)20.(本题满分8分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?NMEDBCA蔡杨阳专用QQ:152491391588附历年真题标准答案:(2007)19.(本小题满分6分)解:过C作AB的垂线,交直线AB于点D,得到Rt△ACD与Rt△BCD.设BD=x海里,在Rt△BCD中,tan∠CBD=CDBD,∴CD=x·tan63.5°.在Rt△ACD中,AD=AB+BD=(60+x)海里,tan∠A=CDAD,∴CD=(60+x)·tan21.3°.∴x·tan63.5°=(60+x)·tan21.3°,即22605xx.解得,x=15.答:轮船继续向东航行15海里,距离小岛C最近.…………………………6′(2008)19.(本小题满分6分)解:设CD为x,在Rt△BCD中,6.18BDC,∵CDBCBDCtan,∴xBDCCDBC34.0tan.········2′在Rt△ACD中,5.64ADC,∵CDACADCtan,∴xADCCDAC1.2tan.∵BCACAB,∴xx34.01.22.1.14x≈.答:CD长约为1.14米.(2009)19.(本小题满分6分)解:由题意知CDAD⊥,EFAD∥,∴90CEF°,设CEx,在RtCEF△中,tanCECFEEF,则8tantan213CExEFxCFE°;在RtCEG△中,tanCECGEGE,则4tantan373CExGExCGE°∵EFFGEG,∴845033xx.37.5x,∴37.51.539CDCEED(米).答:古塔的高度约是39米.·············································································6分(2010)19.(本小题满分6分)解:设CD=x.在Rt△ACD中,tan37ADCD,则34ADx,∴34ADx.在Rt△BCD中,tan48°=BDCD,则1110BDx,∴1110BDx.……………………4分∵AD+BD=AB,∴31180410xx.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.…………………6分BCDACGEDBAF第19题图B37°48°DCA第19题图蔡杨阳专用QQ:152491391589(2011)19.(本小题满分6分)(2012)20.(8分)20、【答案】解:如图,作CDAB交AB的延长线于点D,则4565BCDACD,.在Rt△ACD和Rt△BCD中,设ACx,则sin65ADx,cos65BDCDx.∴100cos65sin65xx.∴100207sin65cos65x(米).∴湖心岛上的迎宾槐C处与凉亭A处之间距离约为207米.(2013)20、解:.CDxm设长为,,,,//,//....(5)AMECCDECBNECEAMAMACDBNCDECCDxABNACDBNABCDAC分即1.751.25.1.75xx解之,得6.1256.1.x∴路灯高CD约为6.1m.………………………(8分)(2014)20.蔡杨阳专用QQ:1524913915810