1新人教版小学五年级下册数学复习资料一、观察物体(三)1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化,能正确辨认从正面、侧面、上面观察到的简单物体的形状。3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,建议同学们先多观察物体,多画观察到的图形,有意识的训练想象能力,逐渐就会观察立体图形了4、观察物体,先要确定观察的方向(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来摆立体图形时,可根据从上面看到的平面图形摆出底层,再根据从正面看到的摆出前排图形,然后根据从左面看对后排进行修正,最后从不同方向观察所摆图形是否符合原题要求5、摆立体图形时,可根据从上面看到的平面图形摆出底层,再根据从正面看到的摆出前排图形,然后根据从左面看对后排进行修正,最后从不同方向观察所摆图形是否符合原题要求。6、数正方体的个数时,为了既不遗漏又不重复,可分层数;观察露在外面的面,应弄清从哪几个方向看到的是什么图形,再计算7、构建空间想象力:(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。8、动手操作,思维拓展用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。例:12是6的倍数,6是12的因数。(1)数a能被b整除,那么____就是____的倍数,____就是____的因数。因数和倍数是相互依存的,不能单独存在。(2)一个数的因数的个数是________,其中最小的因数是______,最大的因数是______。一个数的因数的求法:成对地按顺序找。2(3)一个数的倍数的个数是____________,最小的倍数是__________。一个数的倍数的求法:依次乘以自然数。(4)2、3、5的倍数特征1)个位上是__________________的数都是2的倍数。2)一个数各位..上的数的和是3的倍数,这个数就是3的倍数。3)个位上是________________的数,是5的倍数。4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是_____。3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.关系:奇数+(-)偶数=_______奇数+(-)奇数=________偶数+(-)偶数=_______5、自然数按因数的个数来分:质数、合数、1、0四类.(本学期不考虑0)质数(或素数):只有1和它本身两个因数。合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。最小的质数是____,最小的合数是______,连续的两个质数是__________。每个合数都可以由几个质数相乘得到,质数相乘一定得________。20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。关系:奇数×奇数=奇数质数×质数=合数6、最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;37、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法...分解质因数(一个合数写成几个质数相乘的形式)。比如:30分解质因数是:(30=______________)8、互质数:公因数只有1的两个非零自然数,叫做互质数。两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;三长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。长方体特点:(1)有____个面,____个顶点,_____条棱,相对的面的面积相等,相对的棱的长度相等。(2)(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体特点:(1)正方体有12条棱,它们的长度都相等。(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。3、长方体、正方体有关棱长计算公式:4注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。固体一般就用体积单位,计量液体的体积,如水、油等。常用的容积单位有升和毫升也可以写成L和ml。1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31ml=1cm3)长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高5四分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(把一群羊平均分成若干份,一群羊就是单位“1”。)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/54、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/55、真分数和假分数、带分数(1、真分数:分子比分母小的分数叫真分数。真分数1。(2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≥1(3、带分数:带分数由整数和真分数组成的分数。带分数>1.(4、真分数<1≤假分数真分数<1<带分数6、假分数与整数、带分数的互化68、公因数、最大公因数几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。9、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。10、求最大公因数和最小公倍数方法用12和16来举例(1)、求法一:(列举求同法)最大公因数的求法:12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4最小公倍数的求法:12的倍数有:12、24、36、48、„16的倍数有:16、32、48、„最小公倍数是48(2)、求法二:(分解质因数法)712=2×2×316=2×2×2×2最大公因数是:2×2=4(相同乘)最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)(3)、求法三:(短除法)例1:用短除法求下列各组数的最大公因数。①12和18②34和102③15和50④12、24和36想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。两个数的最大公因数用()表示。《最大公因数就是左边一边所有的数连乘》11、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。12、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。如:24/30=4/513、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如:14、两个数互质的特殊判断方法:815、①1和任何大于1的自然数互质。16、②2和任何奇数都是互质数。17、③相邻的两个自然数是互质数。18、④相邻的两个奇数互质。19、⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。15、求最大公因数的方法:①倍数关系:最大公因数就是较小数。②互质关系:最大公因数就是1③一般关系:从大到小看较小数的因数是否是较大数的因数。16、分数知识图解:五、图形的运动(三)图形变换的基本方式是平移、对称、旋转。其中只是改变原图形位置的变换是平移、旋转对称点是关于一条直线对称的点(对称点一般用于轴对称)9对应点是一个图形经变换后,变换后的的图形与变换前的图形位置相同的点(对应点一般用于平移和旋转)一、图形的平移1、平移不改变图形的大小和形状2、平移的三要素:原图形的位置、平移的方向、平移的距离。平移的方向一般为:水平方向、垂直方向两种。平移的距离:一般为几个单位长度(也即几个方格)3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。4、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。(2)找出原图形的各关键点。(3)根据题目要求将各个点依次平移。(4)顺次连接平移后的各点,标明各点名称二、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形„„等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。(2)圆有无数条对称轴。(3)对称点到对称轴的距离相等。(4)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。三、轴对称图形的画法1、轴对称图形的性质(特征):(1)对称轴两边的图形一定完全相同(2)对称点也关于对称轴对称(3)对称点的连线垂直于对称轴(4)对称点到对称轴的距离相等2、轴对称图形的画法:(1)根据题意确定已知图形以及对称轴位置(2)找出已知图形的关键点(3)依次过每个点作垂直于对称轴的虚线(根据性质3)(4)在对称