2018高考数学分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018高考理科数学评析:概率大题有新意广东加入全国卷已三年,今年的考卷贯彻了稳中求变的思想,多层次、多角度、多视点地考查了学生的数学核心素养和学科潜能,这样的试卷对考生来说无疑是“福音”。从考点与命题特点来看,以能力立意,突出考查数学核心素养。总的来说,回归课本,夯实基础才是王道!一、试卷各板块占比——覆盖比重有调整分析各模块占比:整套试卷在六大板块的考查比重上有所调整,三角函数弱化,概率和解析几何的顺序调换,概率需要用到导数,强调应用性。二、试卷各部分分析——选填重基础,大题较常规①选填题:选择填空部分的考点设置基本与前两年新课标全国卷一致,部分考题有新意,计算量下降,第3题考查概率时加入现实背景,题目不难,但粗心的同学易选错。第7题立体几何,以三视图为背景,结合最短路径考查。第10题几何概型,加入数学历史背景,可用勾股定理联系三个半圆之间的面积关系,也可用特殊值法来解答。第12题立体几何,考查截面面积最大的问题,过程较难想到,但计算量小。填空题前三题较常规,第16题以三角函数为载体,考查函数最值问题,学生容易在三角函数上纠结,实际上应该用导数解答。②解答题:本次大题考查题型较为常规,但是题目顺序略有调整,其中,概率与解析几何位置互换。另外,题目难度相较于往年整体下降。比如,第17题三角函数,两问都只考查了余弦定理,计算量不大。第18题立体几何,主要考查了垂直证明以及线面角的求解,几何法会比建系更为简单,计算量不大,难度一般。第19题改为了圆锥曲线,其中第二问的角度相等需要转化为斜率互为相反数,即证明即可,计算量和难度相较于往年的圆锥曲线问题都大大下降,较易得分。第20题则变成了概率统计问题,首先是位置的对调,体现了未来数学的改革方向——强调应用性+概率统计难度加大。另外,题目的考查方式较为新颖,第一问需要与求导相结合,而第二问需要先利用二项分布求出不合格品的期望,再得到总费用的期望,这一步的思路转化比较困难。最后一道压轴题难度相较于往年难度下降,第一问直接求导或者分参后求导,变为二次函数分类讨论即可;第二问属于与韦达定理相关的双变量问题,最后通过设立新的主元构造函数求函数最值即可。整体来说,在广东确定使用新课标卷的第三年,在题目设置上略有调整,依然需要考生注重基础,回归教材,重视数学本质。但在概率部分增强了应用性,有较强数学核心素养的学生更有优势。2018高考全国卷Ⅰ文科数学评析:基础题比例加大纵观高考新课标全国卷Ⅰ文科数学试题,加大了基础题目的比例以及基础题型的考查。考点大部分覆盖近几年的试题,但在知识比重和能力要求上略有变化。其中概率小题和程序框图题目在2018年试卷中消失,增加了对空间几何体的考查,对学生空间想象能力要求有所提高,比如考查了圆柱的截面、圆柱的表面最短路径、线面夹角,以及空间折叠。同时试卷重视数学知识与实际问题的结合,比如第3题和第19题,以生产生活为背景,从实际中抽象出数学问题,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值。一、试卷各板块占比2018年高考全国1卷文科数学试题遵循《普通高中数学课程标准》、《2018年普通高等学校招生全国统一考试大纲》和《2018年普通高等学校招生全国统一考试大纲的说明》的要求,试卷结构略有调整,删去了程序框图,并减少了对概率统计的考查,增加了三角函数与立体几何,考查学生的数学运算与直观想象核心素养,在题目设置上注重对数学基础知识、数学思想方法和数学能力的考查,加强与实际生活的结合。二、试卷各部分分析①选填题:选择填空部分的考点设置与新课标近几年基本保持一致,顺序略有调整,尤其注重基础,考查通性通法的应用,同时注重与实际生活的接轨。第3题图表题考查学生对文字的阅读理解能力与细心程度;第12题分段函数问题,需要分类讨论或者数形结合的思想去处理,考查学生的综合能力;第16题属于解三角形问题,需要边角互化后借助余弦定理来解决问题。②解答题:第17题与近三年一致考查数列,求数列通项需要构造一个新的等比数列,但前一问证明给了提示,相对而言难度不大。第18题立体几何第1问属于常规证明题,主要考查对面面垂直判定定理的应用,但是证明过程不规范容易失分,第2问属于求棱锥体积的常规题型,但求解过程涉及折叠问题中不变量与变量的动态分析,同时底面面积计算过程稍微复杂,有一定难度,属于中档题。第19题考查频率分布直方图,比较常规,但是需要注意不要犯计算错误。第20题以抛物线作为圆锥曲线大题考查,第1问考查点为直线方程及抛物线方程代入,运用数形结合思维,较容易得出答案。第2问,参考2015年全国卷I的圆锥大题,将角度的证明转化为斜率的关系,考生若掌握直线与圆锥曲线的联立、韦达定理运用,以及一定的计算能力,不难证明。第21题导数题是含有指数和对数的函数,在导数压轴题中较为经典。第1问考查极值的定义,从而求出参数,然后求函数的单调性。在解答时,首先要注意指数函数的定点,从而取到导数为零的点,然后用二次求导即可解决(考查学生对常见函数的熟悉程度)。第2问考查恒成立的问题,并给出了参数的范围,其实相当于把导数最值代入进行计算,从而得到对应的不等式。考虑到函数中既有指数,又有对数,所以考查学生对经典不等式的了解,实际上也可看成是两个函数求交点的问题。③选做题:极坐标系与参数方程题型常规,考查学生对极坐标与直角坐标的转换,第2问需要数形结合,需要学生转换为直线与圆求切线。不等式选讲也是常规题目,第1问已知参数值,属于送分题目。第2问需要根据题目所给范围去掉一个绝对值,如果学生掉入分类讨论的圈子里去,会将题目变得复杂。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功