热力学的第二定律的认识和思考

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

热力学的第二定律的认识和思考1仲恺农业工程学院论文题目:热力学的第二定律的认识和思考论文作者:钟家业作者学号:所在院系:机电工程学院专业班级:指导老师:热力学的第二定律的认识和思考2摘要热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。广义生命演化意义上的熵,体现了生命系统衰落的过程。关键词热力学第二定律,第二类永动机,熵,时间,生活1.热力学第二定律及发展1.1、热力学第二定律建立的历史过程19世纪初,人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。1848年,开尔文爵士(威廉·汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。这些为热力学第二定律的建立准备了条件。1850年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。[1]1.2、热力学第二定律的表述1.2.1、热力学第二定律的开尔文表述热力学的第二定律的认识和思考3不可能从单一热源吸取热量,使之完全变为有用的功而不产生其他影响。这是按照机械能与内能转化过程的方向性来表述的。表述中的“单一热源”是指温度均匀并且恒定不变的热源。若热源不是单一热源,则工作物质就可以从热源中温度较高的一部分吸热而向热源中温度较低的另一部分放热,这实际上相当于两个热源。“其他影响”是指除了单一热源所吸收的热用来作功以外的任何其他变化.当有其他影响产生时,把由单一热源吸来的热量全部用来对外作功是可能的。开尔文表述还可表达为:第二种永动机是不可能造成的。所谓第二种永动机就是一种违反开尔文表述的机器,它能从单一热源吸收热量,使之完全变为有用的功而不产生其他影响,但这种机器不违反能量转化与守恒定律。如果这种热机能够制成,那么就可以利用空气或海洋作为热源,从它们那里不断吸取热量而做功。果真如此,令人头痛的能源问题也就解决了,因为海洋的内能几乎是取之不尽的。1.2.2热力学第二定律的克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化。这是按照热传导的方热力学的第二定律的认识和思考4向性表述的。可以证明,热力学第二定律的开尔文表述和克劳修斯表述是等效的。热力学第二定律是总结概括了大量事实而提出的,由热力学第二定律作出的推论都与实验结果符合,从而证明了这一定律的正确性。经验告诉我们,功可以完全转变为热,而热力学第二定律指出,要把热完全变为功而不产生其他影响则是不可能的。但这一结论由热力学第一定律是得不到的,因为无论功变热或热变功都不违反热力学第一定律。经验还告诉我们,当两个温度不同的物体互相接触时,热量由高温物体向低温物体传递。但是热力学第二定律的克劳修斯表述指出,热量不可能自发地由低温向高温传递。而这一结论也是不能从热力学第一定律得到的,因为这个过程也不违反热力学第一定律。由此看出,热力学第二定律是独立于热力学第一定律的新规律,是一个能够反映过程进行方向的规律。热力学第二定律说明物体的内能不能完全地(在不产生其他影响下)转变为功,相反,功却可以完全地转变为物体的内能。因此,功转化为内能的过程带有单向性,是不可逆的。在自然界中存在着大量的不可逆现象,例如,热量从高温物体自发地传向低温物体,气体自发地向真空膨胀,两种气体自发混合(互扩散)等.显然热力学第二定律隐含地指出了其他不可逆过程的单向性。所以,热力学第二定律是所有单向变化过程的一般规律。下面我们从反面来说明这两种说法的确是等价的:①如果我们否定克劳修斯的说法,认为热量可以自发地从低温物体B传向高温物体A,见图4-1(a)的示意图,设这个热量为Q,我们再设想有一个卡诺热机,从高温热源A吸取热量Q,一部分转化为有用功W,另一部分Q′传给了低温热源B,这样的整个过程中,高温热源A没有发生变化,相当于只从低温热源B吸收了(Q-Q′)的热量而全部转化为有用功,而不产生其他影响,从而开尔文的说法也就被否定了。热力学的第二定律的认识和思考5②反过来,如果我们否定了开尔文的说法,认为可以从单一热源A吸取热量,全部转化为有用功而不产生其他影响,见图4-1(b)的示意图,设这部分热量为Q1,做的有用功为W1(Q1-W1),我们再设想这部分有用功是带动一个理想的致冷机工作,它从另一个低温热源B处吸收热量Q2,向热源A放出热量Q1′,则满足Q1′=Q2+W1,而Q1=W1,所以Q1′=Q2+Q1。这样,总的效果相当于从低温热源B处吸收了热量Q。,向高温热源A放出的热量Q1′,在补偿了Q1以后,正好也是Q2,这就等于热量Q。自发地从低温热源B传向了高温热源地并没有发生其他变化,这就否定了克劳修斯的说法。1.2.3热力学第二定律的普遍表述1865年,克劳修斯引进“熵”的概念来反映这种运动变化的过程和方向,从而可以从数学上严格地表述热力学第二定律。“熵”一词来源于希腊语entropia,原意是转换,中文意思是热量被绝对温度除所得的商。克劳修斯指出,在一个孤立系统(或叫封闭系统)内,熵的变化总是大于或等于零,也就是说,孤立系统的运动变化总是要沿着使熵增大的方向进行,最后的平衡状态则对应于熵的最大可能值。于是热力学第二定律的最普遍表述为:可以找到这样一个态函数——熵,它在可逆过程中的变化等于系统所吸收的热量与热源的绝对温度之比;在不可逆过程中,这个比值小于熵的变化。即对于无穷小的过程,有(1)结合热力学第一定律得热力学的第二定律的认识和思考6(2)在(2)式中,等号对应于可逆过程,不等号对应于不可逆过程。这个式子是热力学理论的基本方程。假设过程是绝热的,即dQ=0,则由(1)式得到(3)由此可见,在绝热过程中,系统的熵永不减少。对于可逆绝热过程,系统的熵不变;对于不可逆绝热过程,系统的熵总是增加,这个结论叫做熵增加原理。根据熵增加原理,任何自发的不可逆过程,只能向熵增加的方向进行,于是熵函数给予了判断不可逆方向的共同准则.既然从非平衡态到平衡态的过程中,熵总是增加,那么系统越接近平衡态,其熵值就越大,所以熵的数值就表征系统接近稳定平衡态的程度。1.3、热力学第二定律的适用范围1.3.1经典热力学第二定律及其适用范围热力学第二定律是十九世纪中叶由W·汤坶孙(开尔文爵士)和克劳修斯在研究卡诺的热机理论和热功转换问题时提出来的。他们分别提出了自己的表述,并证明了这两种表述是等价的。后来,普朗克等人还提出了一些表述,同样也进行了等价性证明。热力学第二定律的这种表述的多样性与物理学的有些定律不一样。它是以一个实际过程的不可逆性来表述一个普遍的自然规律。即自然界的一切实际过程自发进行都沿一定的方向(具有单向性)。或者说一切实际过程都具有不可逆性。两种经典表述都提到的“不产生其它影响”的条件及前面所说的“自发进行”意眯着:所研究的实际过程是在孤立系中进行的,孤立系中这些过程具有单向性。克劳修斯经过十多年的努力,终于找到了热力学第二定律的数学表述,这就是著名的熵增原理:孤立系的熵永不减少。(若Q=0,刚△s≥0)由于孤立系的熵只能增加,即系统只能沿退化的方向进行。这与自然界和人类社会的实际演化过程相矛盾。因而热力学第二定律自然不适用于生命现象和社会现象这样一些不断进化的领域。克劳修斯等人将热力学第二定律外推到宇宙,得出了“宇宙的熵趋于一个极大值”的命题。这就是著名的“热寂说”,即全宇宙最终将达到热平衡。长期以来,人们一直认为字宙是静态的,在时间上无始无终,似乎早该处于热寂了。而实际情况正好相反。这自然遭到了当时许多著名的科学家和哲学家的批判。其中一个重要的论点热力学的第二定律的认识和思考7是:热力学第二定律是在有限的宏现系统中得出的规律,不能外推到无限宇宙。因而,长期以来都认为热力学第二定律不适用于宇观系统。这一论点现在还在大多数教科书与文献中出现。1.3.2“宇宙膨胀”模型与“热寂”佯谬的消除“热寂说”以及对它的批判,都是建立在当时人们对宇宙的认识基础上的。对它的批判总使人感到说服力不强。例如有限条件下得到的结论,就同样有外推成功的先例。热力学第一定律的外推,得出的宇宙的能量守恒就被认为是正确的。上世纪二十年代,以美国天文学家哈勃观察到的星系红移现象为基础而建立起来的大爆炸宇宙学使我们认识到,我们所能观察到的宇宙并不是静态的,而是在不断膨胀。在此基础上,七十年代以后,人们又重新对热寂说进行了考察,发现随着宇宙的膨胀,由于粒子与辐射的温度随膨胀的线度的变化规律不同,即使宇宙最初处于温度均匀的热平衡状态,也会随着膨胀而出现温差,从无序向有序变化,而不会热寂。另一方面,如果宇宙是静态的,则对每一个静态体系总有一个最大熵。而对膨胀的宇宙,每一瞬时对可能达到的最大熵也是不断增加的。只要膨胀得足够快,宇宙实际的熵与最大熵的差异就会越来越大,宇宙离热寂也会越来越远。而不管宇宙是否是有限的和孤立的。这样“热寂佯谬”就以这出入意料的方式迎刃而解了。人们这才发现,“热寂说”的问题是出在人类对宇宙的认识上,而不是出在热力学第二定律的外推上。这样一来,热力学第二定律不适用于宇观系统的限制也就自然解除了。1972年霍金证明黑洞过程的不可逆性和贝肯斯坦引入黑洞熵,建立黑洞热力学,正是热力学第二定律在宇观系统成功运用的范例。1.3.3微观系统同样存在不可逆性如前所述,我们知道热力学第二定律是研究不可逆这一自然现象的科学规律。经典热力学研究的是固体、液体、气体等由大量微观独子(原子、分子、离子)组成的宏观系统的性质及其变化规律的学问。而不可逆性正是这些系统的共性,是大量粒子的集体行为。但是,自然界是分层次的,宏观和微观也是相对的。在每一个层次上的系统都可以认为是由下一个层次的大量子系统所组成。因而不可逆性不应该只存在于某一个特殊的层次中。例如,一个生物群体可以看成是由大量的生物个体组成的系统,一个生物个体也可以看成是由大量的细胞组成的系统,而细胞同样可以看成是由大量的生物分子所组成的系统。在这些不同的层次上,不可逆性都同样存在细胞的不断老化;个体的生老病死;群体的演化发展。现在我们都可以用由热二律发展起来的耗散热力学的第二定律的认识和思考8结构理论来对它们进行研究。同样,我们知道:原子、分子等微观粒子也存在着内部的层次和结构。而且我们还知道许多原子存在着放射性衰变现象。1968年美国的菲奇和克罗宁在K介子衰变实验中也发现了时间对称性的破坏。大统一理论还预言,像质子这样的基本粒子也可能是不稳定的,只不过其衰变周期非常长而已。这些都表明:不可逆性同样也存在于微观领域。所以,笔者认为,热力学第二定律既然是用来描写不可逆性这一广泛存在的自然现象的统一规律,就应该可以用来研究微观领域的不可逆性。当然,将热力学第二定律向微观领域的拓展还有待人们

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功