通信原理前三章作业答案:1-2解:(1)(1,1)(1,0)(11)(1)(10)(02112133310345yxPPPPPPP=+=×+×=×+×=)x(0)(0,0)(0,1)(00)(0)(01)(11192323310345yxPPPPPPP=+=×+×=×+×=)x1-3解:(1)218000()60()300()log2(/)BbitRsBaudbitsymbol==(2)218000()60()100()log8(/)BbitRsBaudbitsymbol==1-5解:212222221log()111110.3log()0.2log()0.2log()0.1log()0.15log()0.05log()0.30.20.20.10.150.052.41(/)niiiHppbitsymbol===+++++=∑11-7解:每个象素的信源熵:10211log(10)3.32(/)10Hbitsymbol==∑每秒钟传输的象素数:525625309843750(symbol)n=××=每秒钟传输信息量:3.32(/)*9843750(symbol)=32.7M(bit)IHnbitsymbol=∗=2-3证明:()[][][][][]0000cossincossin0ExtEAtBtEAEtEBEtωωωω=+⎡⎤⎣⎦=+=1212010102022201020102010202012010201022012(,)[()()][(cossin)(cossin)][coscossinsincossincossin][coscossinsin][cos()]()xxRttExtxtEAtBtAtBtEAttBttABttABttEttttEttRωωωωωωωωωωωωσωωωωσωτ==++=+++=+=−=所以写x(t)是广义平稳过程。2-6证明:(1)100[()][()cos][()]cosEStExttExttωω==①当[()]Ext不等于0,是非平稳的;②当[()]Ext等于0,讨论()xRτ=10120[()cos()()cos()]Exttxtt2ωω=0102()cos()cos()xRttτωωi与t有关,所以非平稳的(2)2000[()][()cos()][()][cos()]1cos()20xEStExttExtEtmtππdωθωθωθθπ−=+=+=+=∫与t无关2()1221221012021201020120(,)[()()][()cos()()cos()][()()][cos()cos()]1()cos()21()cos()2StxxRttEStStExttxttExtxtEttRttRωθωθωθωθτωτωτ==+=+=−=i++只与τ有关所以是广义平稳的。2-8证明:2011[()]cos()02niiiiEStatdπωθθπ==+∑∫=)])]()12212212111211(,)[()()][cos()cos([cos()cos(StnniiijjjijnnijiijjijRttEStStEatatEaattωθωθωθωθ======+=+∑∑∑∑++jai不等于j时1212[cos()cos()][cos()][cos()]0ijiijjiijjiEaattEtEtaωθωθωθωθ++=++=所以2()12121212121(,)[cos()cos()][cos()cos()]cos2nStiiiiiiniiiiiniiiRttEattaEttaiωθωθωθωθωτ====+=+=∑∑∑++得证。111111()lim()limcos()2211limsin()0[()]2nTTiiiTTTTiTniiiTiiTStStdtatdtTTatEStTωθωθω−−→∞→∞=→∞=−===+==∑∫∫∑+2111211()()lim()()21limcos()cos()2cos()2TTTnTiiiiiiTTiniixiStStStStdtTattTaRττωθωωτθωττ−→∞−→∞==+=+=+==∫∑∫∑dt++是个遍历过程。2-11(1)不满足对称性(3)傅立叶变换后不是恒大于0,不符合功率谱的条件2-17(1)1()22xPSfdfBhB+∞−∞==∫iih=(2)02202()()()()sin()BjfjfjfxxBhh2RSfedffhedffhedBBBBhBπτπτπττπτπτ+∞−∞−==++−+=∫∫∫f(3)6121101101PBhm−==×××=V01msτ=2000sin()()0xBRBhBπττπτ==2000sin()()0xBRBhBπττπτ==所以样值不相关2-21证:()[()]XfFxt='()['()](2)()XfFxtjfXfπ==2()()lim2TXfTXfST→∞=22'2'()()2()()2()limlim(2)22(2)TTXfXfTTXfXfjfXfSjTTfSπππ→∞→∞====fS22-41证:12121111222121212121212121()(,)[(),()]{[()cos()sin][()cos()sin]}[()()coscos()()sinsin][()()cossin()()sinconnccscccscccccsscccsccsccRRttEntntEnttnttnttnttEntntttntntttEntntttntnttτωωωωωωωωωω===−−=+−+2s]ctωω窄带平稳过程中:()RR()csnnττ()()cscsnnnnRR=ττ−=−12)()sin()()sinccssnncnnc12()()cos(()cosccnncncRRtRRττωτωτ=−=−tRttτωτωτ−−2-42解:f2-f1f2-f1当1cff=,当2cff=当121()2cfff=+0.5(f2-f1)三种情况下2()[()()]0cscnnHfSfSf+≠则仅有,和在同一时刻,是两个相互独立的高斯随机变量。(0)0csnnR=()cnt()snt3-4解:2222[()]1[(mExtEmExt=+)](a)2211{()}lim()2TTx2ExtxtdtkT−→∞==∫2212211mkEmk=+212101Ekk⎧⎪=⎨⎪+⎩01mm==(b)同理:2212213mkEmk=+212103Ekk⎧⎪=⎨⎪+⎩01mm==(c)同理:2212212mkEmk=+212102Ekk⎧⎪=⎨⎪+⎩01mm==3-7解:平方器输出:222221111()()[1()]cos3311(cos4cos2cos2cos4cos4cos4cos4)4444cccccytxtAxttAftftftftftftωπππππππ==+=+++++cft低通滤波器输出:20131()(cos2cos4)44c1xtAftftππ=++3-10解:(1)(a)(b)(c)(d)(2)通过相同系统就可。3-24解:DSB:230()TxBfkH==z903010xNf−=×50,010rDSBxSSNNf⎛⎞⎜⎟==⎝⎠SW()0.003r=∵信道衰减60dB,∴平均发送功率为()()60.003103000TDSBSW=×=。AM:30()TBkHz=803010xNf−=×2520,0011013xrrAMxxxmSSSSNNfmSNf⎛⎞==⎜⎟+⎝⎠i=()0.009rSW=()()60.009109000TAMSW=×=PM:()21120()TmBfkβ=+=Hz()max3pmpkAkxtβ===250,010rpxPMxSSkSNNf⎛⎞==⎜⎟⎝⎠ii()46.6710rSW−=×()()667TPMSW=FM:()21180()TmBDfkHz=+=250,031rxFMxSSDSNNf⎛⎞==⎜⎟⎝⎠i0()40.810rSW−=×()()80TAMSW=