n¼ê~^úª9ÙõU!an¼êmÄ'X1.tanx=sinxcosx;cotx=1tanx;secx=1cosx;cscx=1sinx2.sin2x+cos2x=1;sec2x=tan2x+1;csc2x=cot2x+1{üÚµ(1)²µ1+sinx=sin2x2+cos2x2+2sinx2cosx2= sinx2+cosx22(2)Òµéup1 x2§e·x=sint;t2[ 2;2]§Kp1 x2=p1 sin2t=costéup1+x2§·x=tant;t2( 2;2)§Kp1+x2=p1+tan2t=sect!²£aúª1.±Ï5µéêk§ksin(x+2k)=sinx;cos(x+2k)=cosx;tan(x+k)=tanx;cot(x+k)=cotx;sec(x+2k)=secx;csc(x+2k)=cscx2.±Ïµsin(x)= sinx;cos(x)= cosx;tan(x2)= cotx{üC/µsin( x)=sinx;cos( x)= cosx;tan(2 x)=cotx3.o©±Ïµsin(2 x)=cosx;sin(2+x)= cosx;cos(2 x)=sinx;cos(2+x)= sinx5¿µùpúªq¡púª§ÌõUÒÏL²£§r¯KÚ·I«mn!üÚ£¤úª1.sin()=sincoscossin2.cos()=coscossinsin3.tan()=tantan1 tantan{üÚµ(1)sinx+cosx=p2hp22sinx+p22cosxi=8:sin(x+4)d1cos(x 4)d2(2)1+tanx1 tanx=tan(x+4)5¿µù|úª¦^ÇØp§´úª!ÚzÈÚÈzÚúªÑ±^ù|úªy²Ñ51o!!úª1.sin2x=2sinxcosx2.cos2x=cos2x sin2x=2cos2x 1=1 2sin2x3.tan2x=2tanx1 tan2x4.cos2x2=1+cosx2;sin2x2=1 cosx25¿µ{uúªªüêkO§±^5üg§~Xcos3xsinx=cos2xcosxsinx=(1+cos2x2)12sin2x=14[sin2x+sin2xcos2x]=14sin2x+12sin4xÊ!ÚzÈ1.sin+sin=2sin+2cos 22.sin sin=2cos+2sin 23.cos+cos=2cos+2cos 24.cos cos= 2sin+2sin 25¿µ|^üÚ£¤úª±y²ÚzÈúª§5¿sin=sin(+2+ 2)8!ÈzÚ1.sincos=12[sin(+)+sin( )]2.cossin=12[sin(+) sin( )]3.coscos=12[cos(+)+cos( )]4.sinsin= 12[cos(+) cos( )]Ô!Uúªsin2x=2tanx1+tan2x;cos2x=1 tan2x1+tan2x;tan2x=2tanx1 tan2x5¿µUúª´½Ø®â^§õUÒ´r¤kn¼êÚtan2