2015年江苏省徐州市中考数学试卷及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015年江苏省徐州市中考数学试卷及答案一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣2的倒数是()A.﹣B.C.﹣2D.22.(3分)下列四个几何体中,主视图为圆的是()A.B.C.D.ABCD3.下列运算正确的是()A.3a2﹣2a2=1B.(a2)3=a5C.a2•a4=a6D.(3a)2=6a24.(3分)使1x有意义的x的取值范围是()A.x≠1B.x≥1C.x>1D.x≥05.(3分)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形7.(3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5B.4C.7D.148.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2B.x>2C.x<5D.x>5二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)4的算术平方根是_____.10.(3分)杨絮纤维的直径约为0.0000105m,该直径用科学记数法表示为_______.11.(3分)小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是______元.12.(3分)若正多边形的一个内角等于140°,则这个正多边形的边数是_______.第7题20xy第8题13.(3分)已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为_____.14.(3分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=___.15.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为___cm.16.(3分)如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=____.17.(3分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为____18.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径___.三、解答题(本大题共10小题,共86分)19.(10分)(2015•徐州)计算:(1)|﹣4|﹣20150+()﹣1﹣1﹣()2(2)(2)(1+)÷.20.(10分)(2015•徐州)(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.21.(7分)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为25%(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?22.(7分)某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下.请根据图中信息,解答下列问题:(1)a=%,b=%,“总是”对应阴影的圆心角为;(2)请你补全条形统计图;(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?23.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=4时,四边形BFCE是菱形.24.(8分)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?25.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=___cm.26.(8分)如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=___;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.27.(8分)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?28.(12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?2015年江苏省徐州市中考数学答案一、选择题(本大题共8小题,每小题3分,共24分)1.A2.B3.C4.B5.A6.B7.A8.C二、填空题(本大题共10小题,每小题3分,共30分)9.210.1.05×10﹣5.11.2512.913.﹣314.125°15.416.87°17.n﹣118.1三、解答题(本大题共10小题,共86分)19.解:(1)原式=4﹣1+2﹣3=2;(2)原式=•=.20.解:(1)因式分解得:(x+1)(x﹣3)=0,即x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)由①得x>3由②得x>1∴不等式组的解集为x>3.21.解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12=.22.解:(1)80÷40%=200(人),a=38÷200=19%,b=100%﹣40%﹣21%﹣19%=20%;40%×360°=144°,故答案为:19,20,144;(2)“有时”的人数为:20%×200=40(人),“常常”的人数为:200×21%=42(人),如图所示:(3)1200×=480(人),答:数学课“总是”开展小组合作学习的学生有480人;(4)相比2012年,2014年数学课开展小组合作学习情况有所好转.23.(1)证明:∵AB=DC,∴AC=DF,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4时,四边形BFCE是菱形,24.解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则50×8+40×2=480(元),答:打折前需要的钱数是480元.25.解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=12,26.解:(1)连接OE,如,图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).故答案为4.27.解:(1)图中B点的实际意义表示当用水25m3时,所交水费为90元;(2)设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为1.5x元/m3,设A(a,45),则解得,∴A(15,45),B(25,90)设线段AB所在直线的表达式为y=kx+b则,解得∴线段AB所在直线的表达式为y=x﹣;(3)设该户5月份用水量为xm3(x>90),由第(2)知第二阶梯水的单价为4.5元/m3,第三阶梯水的单价为6元/m3则根据题意得90+6(x﹣25)=102解得,x=27答:该用户5月份用水量为27m3.解:(1)∵OA是⊙O的直径,∴∠OBA=90°,故答案为:90;(2)连接OC,如图1所示,∵由(1)知OB⊥AC,又AB=BC,∴OB是的垂直平分线,∴OC=OA=10,在Rt△OCD中,OC=10,CD=8,∴OD=6,∴C(6,8),B(8,4)∴OB所在直线的函数关系为y=x,又∵E点的横坐标为6,∴E点纵坐标为3,即E(6,3),抛物线过O(0,0),E(6,3),A(10,0),∴设此抛物线的函数关系式为y=ax(x﹣10),把E点坐标代入得:3=6a(6﹣10),解得a=﹣.∴此抛物线的函数关系式为y=﹣x(x﹣10),即y=﹣x2+x;(3)设点P(p,﹣p2+p),①若点P在CD的左侧,延长OP交CD于Q,如右图2,OP所在直线函数关系式为:y=(﹣p+)x∴当x=6时,y=,即Q点纵坐标为,∴QE=﹣3=,S四边形POAE=S△OAE+S△OPE=S△OAE+S△OQE﹣S△PQE=•OA•DE+QE•OD﹣•QE•Px•=×10×3+×(﹣p+)×6﹣•()•(6﹣p),=②若点P在CD的右侧,延长AP交CD于Q,如右图3,P(p,﹣p2+p),A(1

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功